Θ-summability of Fourier series

被引:2
作者
Ferenc Weisz
机构
[1] Eötvös Loránd University,Department of Numerical Analysis
来源
Acta Mathematica Hungarica | 2004年 / 103卷
关键词
trigonometric system; Walsh system; Vilenkin system; ?-summability; Fejér means; Hardy spaces; Fourier transforms; Walsh--Kaczmarz system; Ciesielski system;
D O I
暂无
中图分类号
学科分类号
摘要
A general summability method of orthogonal series is given with the help of an integrable function Θ. Under some conditions on Θ we show that if the maximal Fejér operator is bounded from a Banach space X to Y, then the maximal Θ-operator is also bounded. As special cases the trigonometric Fourier, Walsh, Walsh--Kaczmarz, Vilenkin and Ciesielski--Fourier series and the Fourier transforms are considered. It is proved that the maximal operator of the Θ-means of these Fourier series is bounded from Hp to Lp (1/2<p≤; ∞) and is of weak type (1,1). In the endpoint case p=1/2 a weak type inequality is derived. As a consequence we obtain that the Θ-means of a function f∈L1 converge a.e. to f. Some special cases of the Θ-summation are considered, such as the Weierstrass, Picar, Bessel, Riesz, de la Vallée-Poussin, Rogosinski and Riemann summations. Similar results are verified for several-dimensional Fourier series and Hardy spaces.
引用
收藏
页码:139 / 176
页数:37
相关论文
共 44 条
[11]  
Fine N. J.(1996)On ( Acta Sci. Math. (Szeged) 62 537-555
[12]  
Fine N. J.(1996),1) summability of integrable functions with respect to the Walsh-Kaczmarz system Analysis 16 125-135
[13]  
Fujii N.(1996)On the summability of double Fourier series Bolyai Soc. Math. Studies 5 275-292
[14]  
Gát G.(1997)The maximal Fejér operator for Fourier transforms of functions in Hardy spaces Automatica 33 2019-2024
[15]  
Marcinkiewicz J.(1996)The maximal Fejér operator is bounded from Bolyai Soc. Math. Studies 5 307-320
[16]  
Zygmund A.(1975)(T) to Ann. Univ. Sci. Budapest., Sect. Math. 18 189-195
[17]  
Móricz F.(1976)(T) Studia Math. 58 287-290
[18]  
Móricz F.(1998)The maximal Fejér operator on the spaces Publ. Math. Debrecen 52 611-633
[19]  
Móricz F.(1948) and Izv. Akad. Nauk SSSR Ser. Mat. 12 179-192
[20]  
Schipp F.(1985) system approximation algorithms generated by ϕ summations Ann. Univ. Sci. Budapest., Sect. Math. 27 87-101