Θ-summability of Fourier series

被引:2
作者
Ferenc Weisz
机构
[1] Eötvös Loránd University,Department of Numerical Analysis
来源
Acta Mathematica Hungarica | 2004年 / 103卷
关键词
trigonometric system; Walsh system; Vilenkin system; ?-summability; Fejér means; Hardy spaces; Fourier transforms; Walsh--Kaczmarz system; Ciesielski system;
D O I
暂无
中图分类号
学科分类号
摘要
A general summability method of orthogonal series is given with the help of an integrable function Θ. Under some conditions on Θ we show that if the maximal Fejér operator is bounded from a Banach space X to Y, then the maximal Θ-operator is also bounded. As special cases the trigonometric Fourier, Walsh, Walsh--Kaczmarz, Vilenkin and Ciesielski--Fourier series and the Fourier transforms are considered. It is proved that the maximal operator of the Θ-means of these Fourier series is bounded from Hp to Lp (1/2<p≤; ∞) and is of weak type (1,1). In the endpoint case p=1/2 a weak type inequality is derived. As a consequence we obtain that the Θ-means of a function f∈L1 converge a.e. to f. Some special cases of the Θ-summation are considered, such as the Weierstrass, Picar, Bessel, Riesz, de la Vallée-Poussin, Rogosinski and Riemann summations. Similar results are verified for several-dimensional Fourier series and Hardy spaces.
引用
收藏
页码:139 / 176
页数:37
相关论文
共 44 条
[1]  
Bokor J.(1998)Approximate identification in Laguerre and Kautz bases Automatica 34 463-468
[2]  
Schipp F.(1977)Equivalence of Haar and Franklin bases in Studia Math. 60 195-210
[3]  
Ciesielski Z.(1968) spaces Studia Math. 31 339-346
[4]  
Simon P.(1975)A bounded orthonormal system of polygonals Studia Math. 53 277-302
[5]  
Sjölin P.(1984)Constructive function theory and spline systems Indiana Univ. Math. J. 33 873-889
[6]  
Ciesielski Z.(1949)Maximal estimates for Cesàro and Riesz means on spheres Trans. Amer. Math. Soc. 65 372-414
[7]  
Ciesielski Z.(1955)On the Walsh functions Proc. Nat. Acad. Sci. USA 41 558-591
[8]  
Colzani L.(1979)Cesàro summability of Walsh-Fourier series Proc. Amer. Math. Soc. 77 111-116
[9]  
Taibleson M. H.(1998)A maximal inequality for Studia Math. 130 135-148
[10]  
Weiss G.(1939)-functions on a generalized Walsh-Paley group Fund. Math. 32 122-132