Equational theories as congruences of enriched monoids

被引:0
作者
A. M. Nurakunov
机构
[1] National Academy of Science,Institute of Mathematics
来源
Algebra universalis | 2008年 / 58卷
关键词
08B15; Equational theory; variety; lattice; monoid; congruence;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of characterizing the lattices of equational theories is still unsolved. In this paper we describe a class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}}$$\end{document} of monoids enriched by two unary operations and show that a lattice L is a lattice of equational theories if and only if L is isomorphic to a lattice of congruences of some enriched monoid belonging to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}}$$\end{document}.
引用
收藏
页码:357 / 372
页数:15
相关论文
empty
未找到相关数据