Bound states of the Schrödinger operator of a system of three bosons on a lattice

被引:0
作者
S. N. Lakaev
A. R. Khalmukhamedov
A. M. Khalkhuzhaev
机构
[1] Samarkand State University,
来源
Theoretical and Mathematical Physics | 2016年 / 188卷
关键词
discrete Schrodinger operator; three-particle system; contact coupling; eigenvalue; bound state; essential spectrum; lattice;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Hamiltonian Hµ of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice ℤd, d = 1, 2, and coupled by an attractive pairwise contact potential µ < 0. We prove that the number of bound states of the corresponding Schrödinger operator Hµ(K), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K \in \mathbb{T}^d$$\end{document}, is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K \in \mathbb{T}^d$$\end{document} are regular.
引用
收藏
页码:994 / 1005
页数:11
相关论文
共 30 条
[1]  
Winkler K.(2006)Asymptotics for the number of negative eigenvalues of three-body Schrödinger operators with Efimov effect Nature 441 853-856
[2]  
Thalhammer G.(1998)undefined Lett. Math. Phys. 43 73-85
[3]  
Lang F.(2004)undefined Ann. Henri Poincaré 5 743-772
[4]  
Grimm R.(2012)undefined Markov Process. Relat. Fields 18 387-420
[5]  
Denschlag J. H.(1970)undefined Phys. Lett. B 33 563-564
[6]  
Daley A. J.(1993)undefined Funct. Anal. Appl. 27 166-175
[7]  
Kantian A.(1993)undefined Commun. Math. Phys. 156 101-126
[8]  
Büchler H. P.(1994)undefined Spectral Scattering Theory and Applications 23 311-322
[9]  
Zoller P.(1974)undefined Math. USSR-Sb. 23 535-559
[10]  
Albeverio S.(1983)undefined Theor. Math. Phys. 55 357-365