Multifunctional carbon-nanotube cellular endoscopes

被引:0
作者
Singhal R. [1 ,5 ]
Orynbayeva Z. [1 ,2 ,5 ]
Sundaram R.V.K. [3 ,5 ]
Niu J.J. [1 ,5 ]
Bhattacharyya S. [1 ,5 ,6 ]
Vitol E.A. [4 ,5 ]
Schrlau M.G. [1 ,5 ]
Papazoglou E.S. [3 ,5 ]
Friedman G. [4 ,5 ]
Gogotsi Y. [1 ,5 ]
机构
[1] Department of Materials Science and Engineering, Drexel University, Philadelphia
[2] Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia
[3] School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia
[4] Department of Electrical and Computer Engineering, Drexel University, Philadelphia
[5] A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia
[6] Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur - 741252, Nadia, W.B.
基金
美国国家科学基金会;
关键词
D O I
10.1038/nnano.2010.241
中图分类号
学科分类号
摘要
Glass micropipettes, atomic force microscope tips and nanoneedles can be used to interrogate cells, but these devices either have conical geometries that can damage cells during penetration or are incapable of continuous fluid handling. Here, we report a carbon-nanotube-based endoscope for interrogating cells, transporting fluids and performing optical and electrochemical diagnostics at the single organelle level. The endoscope, which is made by placing a multiwalled carbon nanotube (length, 50-60 μm) at the tip of a glass pipette, can probe the intracellular environment with a spatial resolution of ∼100 nm and can also access organelles without disrupting the cell. When the nanotube is filled with magnetic nanoparticles, the endoscope can be remotely manoeuvered to transport nanoparticles and attolitre volumes of fluids to and from precise locations. Because they are mounted on conventional glass micropipettes, the endoscopes readily fit standard instruments, creating a broad range of opportunities for minimally invasive intracellular probing, drug delivery and single-cell surgery. © 2011 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:57 / 64
页数:7
相关论文
共 33 条
[1]  
Lee S., An R., Hunt A.J., Liquid glass electrodes for nanofluidics, Nature Nanotech., 5, pp. 412-416, (2010)
[2]  
Knoblauch M., Hibberd J.M., Gray J.C., Van Bel A.J.E., A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes, Nature Biotechnol., 17, pp. 906-909, (1999)
[3]  
Sun Y., Wan T., Roberts K.P., Bischof J.C., Nelson B.J., Mechanical property characterization of mouse zona pellucida, IEEE Trans. Nanobiosci., 2, pp. 279-286, (2003)
[4]  
Schrlau M.G., Falls E.M., Ziober B.L., Bau H.H., Carbon nanopipettes for cell probes and intracellular injection, Nanotechnology, 19, (2008)
[5]  
Schrlau M.G., Dun N.J., Bau H.H., Cell electrophysiology with carbon nanopipettes, ACS Nano, 3, pp. 563-568, (2009)
[6]  
Singhal R., Et al., Small diameter carbon nanopipettes, Nanotechnology, 21, (2010)
[7]  
Kouklin N.A., Kim W.E., Lazareck A.D., Xu J.M., Carbon nanotube probes for single-cell experimentation and assays, Appl. Phys. Lett., 87, (2005)
[8]  
Obataya I., Nakamura C., Han S., Nakamura N., Miyake J., Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle, Nano Lett., 5, pp. 27-30, (2004)
[9]  
Han S.W., Nakamura C., Obataya I., Nakamura N., Miyake J., A molecular delivery system by using AFM and nanoneedle, Biosens. Bioelectron., 20, pp. 2120-2125, (2005)
[10]  
Han S., Nakamura C., Obataya I., Nakamura N., Miyake J., Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness, Biochem. Biophys. Res. Commun., 332, pp. 633-639, (2005)