Hierarchical Method for Cooperative Multiagent Reinforcement Learning in Markov Decision Processes

被引:0
作者
V. E. Bolshakov
A. N. Alfimtsev
机构
[1] Bauman Moscow State Technical University,
来源
Doklady Mathematics | 2023年 / 108卷
关键词
multiagent reinforcement learning; hierarchical learning; subgoal discovery; hindsight experience replay; centralized learning with decentralized execution; sparse rewards;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:S382 / S392
相关论文
共 105 条
[1]  
Singh S.(2010)Intrinsically motivated reinforcement learning: an evolutionary perspective IEEE Trans. Auton. Mental Dev. 2 70-82
[2]  
Lewis R. L.(2015)Human-level control through deep reinforcement learning Nature 518 529-533
[3]  
Barto A. G.(2016)Mastering the game of Go with deep neural networks and tree search Nature 529 484-489
[4]  
Sorg J.(2019)Grandmaster level in StarCraft II using multi-agent reinforcement learning Nature 575 350-354
[5]  
Mnih V.(2017)Deep reinforcement learning framework for autonomous driving Electron. Imaging 29 70-76
[6]  
Kavukcuoglu K.(2021)Episodic multi-agent reinforcement learning with curiosity-driven exploration Adv. Neural Inf. Process. Syst. 34 3757-3769
[7]  
Silver D.(2015)The arcade learning environment: An evaluation platform for general agents J. Artif. Intell. Res. 47 253-279
[8]  
Rusu A. A.(2003)Recent advances in hierarchical reinforcement learning Discrete Event Dynamic Syst. 13 41-77
[9]  
Veness J.(2000)Hierarchical reinforcement learning with the MAXQ value function decomposition J. Art-if. Intell. Res. 13 227-303
[10]  
Bellemare M. G.(1999)Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning Artif. Intell. 112 181-211