Scrambling and quantum teleportation

被引:0
作者
MuSeong Kim
Mi-Ra Hwang
Eylee Jung
DaeKil Park
机构
[1] Pharos iBio Co.,Department of Electronic Engineering
[2] Kyungnam University,Department of Physics
[3] Kyungnam University,undefined
来源
Quantum Information Processing | / 22卷
关键词
Scrambling; Quantum teleportation; Information loss problem;
D O I
暂无
中图分类号
学科分类号
摘要
Scrambling is a concept introduced from information loss problem arising in black hole. In this paper we discuss the effect of scrambling from a perspective of pure quantum information theory regardless of the information loss problem. We introduce 7-qubit quantum circuit for a quantum teleportation. It is shown that the teleportation can be perfect if a maximal scrambling unitary is used. From this fact we conjecture that “the quantity of scrambling is proportional to the fidelity of teleportation”. In order to confirm the conjecture, we introduce θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-dependent partially scrambling unitary, which reduces to no scrambling and maximal scrambling at θ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = 0$$\end{document} and θ=π/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = \pi / 2$$\end{document}, respectively. Then, we compute the average fidelity analytically, and numerically by making use of qiskit (version 0.36.2) and 7-qubit real quantum computer ibm_\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_$$\end{document}oslo. Finally, we show that our conjecture can be true or false depending on the choice of qubits for Bell measurement.
引用
收藏
相关论文
共 61 条
[11]  
Jozsa R(2013)Information in black hole radiation Towards the fast scrambling conjecture. JHEP 04 2460-undefined
[12]  
Peres A(2016)undefined A bound on chaos. JHEP 08 3743-undefined
[13]  
Wootters WK(1976)undefined Phys. Rev. D 14 undefined-undefined
[14]  
Bennett CH(1993)undefined Phys. Rev. Lett. 71 undefined-undefined
[15]  
Wiesner SJ(undefined)undefined undefined undefined undefined-undefined
[16]  
Ekert AK(undefined)undefined undefined undefined undefined-undefined
[17]  
García-Álvarez L(undefined)undefined undefined undefined undefined-undefined
[18]  
Egusquiza IL(undefined)undefined undefined undefined undefined-undefined
[19]  
Lamata L(undefined)undefined undefined undefined undefined-undefined
[20]  
del Campo A(undefined)undefined undefined undefined undefined-undefined