Scrambling and quantum teleportation

被引:0
作者
MuSeong Kim
Mi-Ra Hwang
Eylee Jung
DaeKil Park
机构
[1] Pharos iBio Co.,Department of Electronic Engineering
[2] Kyungnam University,Department of Physics
[3] Kyungnam University,undefined
来源
Quantum Information Processing | / 22卷
关键词
Scrambling; Quantum teleportation; Information loss problem;
D O I
暂无
中图分类号
学科分类号
摘要
Scrambling is a concept introduced from information loss problem arising in black hole. In this paper we discuss the effect of scrambling from a perspective of pure quantum information theory regardless of the information loss problem. We introduce 7-qubit quantum circuit for a quantum teleportation. It is shown that the teleportation can be perfect if a maximal scrambling unitary is used. From this fact we conjecture that “the quantity of scrambling is proportional to the fidelity of teleportation”. In order to confirm the conjecture, we introduce θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-dependent partially scrambling unitary, which reduces to no scrambling and maximal scrambling at θ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = 0$$\end{document} and θ=π/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = \pi / 2$$\end{document}, respectively. Then, we compute the average fidelity analytically, and numerically by making use of qiskit (version 0.36.2) and 7-qubit real quantum computer ibm_\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_$$\end{document}oslo. Finally, we show that our conjecture can be true or false depending on the choice of qubits for Bell measurement.
引用
收藏
相关论文
共 61 条
[1]  
Ladd TD(2010)Quantum computers Nature 464 45-undefined
[2]  
Jelezko F(1935)Die gegenwärtige Situation in der Quantenmechanik Naturwissenschaften 23 807-undefined
[3]  
Laflamme R(1993)Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channles Phys. Rev. Lett. 70 1895-undefined
[4]  
Nakamura Y(1992)Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states Phys. Rev. Lett. 69 2881-undefined
[5]  
Monroe C(1991)Quantum cryptography based on Bell’s theorem Phys. Rev. Lett. 67 661-undefined
[6]  
O’Brien JL(2017)Digital quantum simulation of minimal AdS/CFT Phys. Rev. Lett. 119 491-undefined
[7]  
Schrödinger E(2018)Mimicking black hole event horizons in atomic and solid-state systems Nat. Rev. Mater. 3 61-undefined
[8]  
Bennett CH(2018)Quantum optimization using variational algorithms on near-term quantum devices Quantum Sci. Technol. 3 065-undefined
[9]  
Brassard G(2019)Verified quantum information scrambling Nature 567 22-undefined
[10]  
Crepeau C(2008)Breakdown of predictability in gravitational collapse Fast scramblers. JHEP 10 106-undefined