Symmetric power functoriality for holomorphic modular forms, II

被引:79
作者
Newton, James [1 ,2 ]
Thorne, Jack A. [3 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Math Inst, Woodstock Rd, Oxford OX2 6GG, England
[3] Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
来源
PUBLICATIONS MATHEMATIQUES DE L IHES | 2021年 / 134卷 / 01期
基金
欧洲研究理事会;
关键词
GALOIS REPRESENTATIONS; CONJECTURE; AUTOMORPHY;
D O I
10.1007/s10240-021-00126-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a cuspidal Hecke eigenform without complex multiplication. We prove the automorphy of the symmetric power lifting Symn f for every n >= 1.
引用
收藏
页码:117 / 152
页数:36
相关论文
共 34 条
[21]  
Gelbart S., 1975, Automorphic Forms on Adele Groups, Vno. 83
[22]   Modularity lifting theorems for ordinary Galois representations [J].
Geraghty, David .
MATHEMATISCHE ANNALEN, 2019, 373 (3-4) :1341-1427
[23]   Serre's modularity conjecture: The level one case [J].
Khare, Chandrashekhar .
DUKE MATHEMATICAL JOURNAL, 2006, 134 (03) :557-589
[24]   Serre's modularity conjecture (I) [J].
Khare, Chandrashekhar ;
Wintenberger, Jean-Pierre .
INVENTIONES MATHEMATICAE, 2009, 178 (03) :485-504
[25]   An example of non-normal quintic automorphic induction and modularity of symmetric powers of cusp forms of icosahedral type [J].
Kim, HH .
INVENTIONES MATHEMATICAE, 2004, 156 (03) :495-502
[26]   Moduli of finite flat group schemes, and modularity [J].
Kisin, Mark .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1085-1180
[27]   Modularity of 2-adic Barsotti-Tate representations [J].
Kisin, Mark .
INVENTIONES MATHEMATICAE, 2009, 178 (03) :587-634
[28]  
Labesse J.-P., 2011, STABILIZATION TRACE, V1[44, P429
[29]  
Newton J., 2020, J EUR MATH SOC
[30]  
Newton J, 2021, PUBL MATH-PARIS, V134, P1, DOI 10.1007/s10240-021-00127-3