Symmetric power functoriality for holomorphic modular forms, II

被引:79
作者
Newton, James [1 ,2 ]
Thorne, Jack A. [3 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Math Inst, Woodstock Rd, Oxford OX2 6GG, England
[3] Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
来源
PUBLICATIONS MATHEMATIQUES DE L IHES | 2021年 / 134卷 / 01期
基金
欧洲研究理事会;
关键词
GALOIS REPRESENTATIONS; CONJECTURE; AUTOMORPHY;
D O I
10.1007/s10240-021-00126-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a cuspidal Hecke eigenform without complex multiplication. We prove the automorphy of the symmetric power lifting Symn f for every n >= 1.
引用
收藏
页码:117 / 152
页数:36
相关论文
共 34 条
[1]   Automorphy lifting for residually reducible l-adic Galois representations, II [J].
Allen, Patrick B. ;
Newton, James ;
Thorne, Jack A. .
COMPOSITIO MATHEMATICA, 2020, 156 (11) :2399-2422
[2]  
[Anonymous], 2020, GAP: groups, algorithms, and programming, software
[3]   Potential automorphy and change of weight [J].
Barnet-Lamb, Thomas ;
Gee, Toby ;
Geraghty, David ;
Taylor, Richard .
ANNALS OF MATHEMATICS, 2014, 179 (02) :501-609
[4]   THE SATO-TATE CONJECTURE FOR HILBERT MODULAR FORMS [J].
Barnet-Lamb, Thomas ;
Gee, Toby ;
Geraghty, David .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (02) :411-469
[5]   A Family of Calabi-Yau Varieties and Potential Automorphy II [J].
Barnet-Lamb, Tom ;
Geraghty, David ;
Harris, Michael ;
Taylor, Richard .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (01) :29-98
[6]  
Bellaïche J, 2009, ASTERISQUE, P1
[7]  
Berthelot P., 1982, THEORIE DIEUDONN CRI, DOI 10.1007/BFb0093025
[8]   (G)over-cap-local systems on smooth projective curves are potentially automorphic [J].
Boeckle, Gebhard ;
Harris, Michael ;
Khare, Chandrashekhar ;
Thorne, Jack A. .
ACTA MATHEMATICA, 2019, 223 (01) :1-111
[9]  
Breuil C, 2002, DUKE MATH J, V115, P205
[10]   On the modularity of elliptic curves over Q: Wild 3-adic exercises [J].
Breuil, C ;
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :843-939