The Fredholm Property for Groupoids is a Local Property

被引:0
作者
Rémi Côme
机构
[1] Université de Lorraine,Institut Élie Cartan de Lorraine
来源
Results in Mathematics | 2019年 / 74卷
关键词
Fredholm operator; Fredholm groupoid; -algebra; pseudodifferential operator; primitive spectrum; 58J40 (primary); 58H05; 46L05; 47L80;
D O I
暂无
中图分类号
学科分类号
摘要
Fredholm Lie groupoids were introduced by Carvalho, Nistor and Qiao as a tool for the study of partial differential equations on open manifolds. This article extends the definition to the setting of locally compact groupoids and proves that “the Fredholm property is local”. Let G⇉X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}\rightrightarrows X$$\end{document} be a topological groupoid and (Ui)i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(U_i)_{i\in I}$$\end{document} be an open cover of X. We show that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document} is a Fredholm groupoid if, and only if, its reductions GUiUi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}^{U_i}_{U_i}$$\end{document} are Fredholm groupoids for all i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in I$$\end{document}. We exploit this criterion to show that many groupoids encountered in practical applications are Fredholm. As an important intermediate result, we use an induction argument to show that the primitive spectrum of C∗(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*({\mathcal {G}})$$\end{document} can be written as the union of the primitive spectra of all C∗(GUiUi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*({\mathcal {G}}^{U_i}_{U_i})$$\end{document}, for i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in I$$\end{document}.
引用
收藏
相关论文
共 65 条
[21]  
Rochon F(2019)Boundary value problems for elliptic equations in domains with conical or angular points C. R. Math. Acad. Sci. Paris 357 200-22
[22]  
Debord C(1987)Pseudodifferential analysis on conformally compact spaces J. Oper. Theory 17 3-3641
[23]  
Skandalis G(1996)Pseudodifferential analysis on continuous family groupoids Trans. Am. Math. Soc. 348 3621-229
[24]  
Georgescu V(2002)Elliptic theory of differential edge operators. I J. Reine Angew. Math. 550 211-67
[25]  
Iftimovici A(2007)Exhaustive families of representations of J. Funct. Anal. 250 42-279
[26]  
Gualtieri M(2017)-algebras associated with J. Oper. Theory 78 247-152
[27]  
Li S(1999)-body Hamiltonians with asymptotically homogeneous interactions Pacific J. Math. 189 117-104
[28]  
Hilsum M(2000)Equivalence and isomorphism for groupoid Homol. Homotopy Appl. 2 89-1471
[29]  
Skandalis G(2004)-algebras Rocky Mt. J. Math. 34 1399-257
[30]  
Ionescu M(1974)Continuous-trace groupoid Adv. Math. 13 176-597