The Fredholm Property for Groupoids is a Local Property

被引:0
作者
Rémi Côme
机构
[1] Université de Lorraine,Institut Élie Cartan de Lorraine
来源
Results in Mathematics | 2019年 / 74卷
关键词
Fredholm operator; Fredholm groupoid; -algebra; pseudodifferential operator; primitive spectrum; 58J40 (primary); 58H05; 46L05; 47L80;
D O I
暂无
中图分类号
学科分类号
摘要
Fredholm Lie groupoids were introduced by Carvalho, Nistor and Qiao as a tool for the study of partial differential equations on open manifolds. This article extends the definition to the setting of locally compact groupoids and proves that “the Fredholm property is local”. Let G⇉X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}\rightrightarrows X$$\end{document} be a topological groupoid and (Ui)i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(U_i)_{i\in I}$$\end{document} be an open cover of X. We show that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document} is a Fredholm groupoid if, and only if, its reductions GUiUi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}^{U_i}_{U_i}$$\end{document} are Fredholm groupoids for all i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in I$$\end{document}. We exploit this criterion to show that many groupoids encountered in practical applications are Fredholm. As an important intermediate result, we use an induction argument to show that the primitive spectrum of C∗(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*({\mathcal {G}})$$\end{document} can be written as the union of the primitive spectra of all C∗(GUiUi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*({\mathcal {G}}^{U_i}_{U_i})$$\end{document}, for i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in I$$\end{document}.
引用
收藏
相关论文
共 65 条
[1]  
Ammann B(2004)On the geometry of Riemannian manifolds with a Lie structure at infinity Int. J. Math. Math. Sci. 1–4 161-193
[2]  
Lauter R(1976)Spectral asymmetry and Riemannian geometry. III Math. Proc. Camb. Philos. Soc. 79 71-99
[3]  
Nistor V(1968)The index of elliptic operators. I Ann. Math. Second Ser. 87 484-530
[4]  
Atiyah MF(1985)Graphe d’un feuilletage singulier C. R. Acad. Sci. Paris Sér. I Math. 300 439-442
[5]  
Patodi VK(2018)Getzler rescaling via adiabatic deformation and a renormalized index formula J. Math. Pures Appl. 9 220-252
[6]  
Singer IM(2013)Layer potentials Cent. Eur. J. Math. 11 27-54
[7]  
Atiyah MF(1999)-algebras of domains with conical points K-Theory 17 319-362
[8]  
Singer IM(2003)Cyclic Cohomology of Étale Groupoids: The General Case Ann. Math. (2) 157 575-620
[9]  
Bigonnet B(2001)Integrability of Lie brackets J. Differ. Geom. 58 467-500
[10]  
Pradines J(2015)Holonomy groupoids of singular foliations Université de Grenoble. Annales de l’Institut Fourier 65 1799-1880