Automated cell cycle and cell size measurements for single-cell gene expression studies

被引:1
|
作者
Guillemin A. [1 ]
Richard A. [1 ]
Gonin-Giraud S. [1 ]
Gandrillon O. [1 ,2 ]
机构
[1] Laboratoire de Biologie et Modélisation de la Cellule, LBMC-Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon 1, Inst. National de la Sante et de la Recherche Medicale: U1210-Ecole Normale Superieure de Lyon, Centre National de la Recherche Sci
[2] Inria Dracula, Villeurbanne
关键词
Cell cycle; Cell size; Gene expression; Single-cell transcriptomic;
D O I
10.1186/s13104-018-3195-y
中图分类号
学科分类号
摘要
Objectives: Recent rise of single-cell studies revealed the importance of understanding the role of cell-to-cell variability, especially at the transcriptomic level. One of the numerous sources of cell-to-cell variation in gene expression is the heterogeneity in cell proliferation state. In order to identify how cell cycle and cell size influences gene expression variability at the single-cell level, we provide an universal and automatic toxic-free label method, compatible with single-cell high-throughput RT-qPCR. The method consists of isolating cells after a double-stained, analyzing their morphological parameters and performing a transcriptomic analysis on the same identified cells. Results: This led to an unbiased gene expression analysis and could be also used for improving single-cell tracking and imaging when combined with cell isolation. As an application for this technique, we showed that cell-to-cell variability in chicken erythroid progenitors was negligibly influenced by cell size nor cell cycle. © 2018 The Author(s).
引用
收藏
相关论文
共 50 条
  • [41] Single-Cell Physiology
    Taheri-Araghi, Sattar
    Brown, Steven D.
    Sauls, John T.
    McIntosh, Dustin B.
    Jun, Suckjoon
    ANNUAL REVIEW OF BIOPHYSICS, VOL 44, 2015, 44 : 123 - 142
  • [42] Single-cell assays
    Ryan, Declan
    Ren, Kangning
    Wu, Hongkai
    BIOMICROFLUIDICS, 2011, 5 (02)
  • [43] T Cell Fate at the Single-Cell Level
    Buchholz, Veit R.
    Schumacher, Ton N. M.
    Busch, Dirk H.
    ANNUAL REVIEW OF IMMUNOLOGY, VOL 34, 2016, 34 : 65 - 92
  • [44] Cell type prioritization in single-cell data
    Skinnider, Michael A.
    Squair, Jordan W.
    Kathe, Claudia
    Anderson, Mark A.
    Gautier, Matthieu
    Matson, Kaya J. E.
    Milano, Marco
    Hutson, Thomas H.
    Barraud, Quentin
    Phillips, Aaron A.
    Foster, Leonard J.
    La Manno, Gioele
    Levine, Ariel J.
    Courtine, Gregoire
    NATURE BIOTECHNOLOGY, 2021, 39 (01) : 30 - 34
  • [45] Endothelial cell plasticity at the single-cell level
    Pasut, Alessandra
    Becker, Lisa M.
    Cuypers, Anne
    Carmeliet, Peter
    ANGIOGENESIS, 2021, 24 (02) : 311 - 326
  • [46] Mapping Cell Atlases at the Single-Cell Level
    Ye, Fang
    Wang, Jingjing
    Li, Jiaqi
    Mei, Yuqing
    Guo, Guoji
    ADVANCED SCIENCE, 2024, 11 (08)
  • [47] Single-cell Technology in Stem Cell Research
    Golchin, Ali
    Shams, Forough
    Moradi, Faezeh
    Sadrabadi, Amin Ebrahimi
    Parviz, Shima
    Alipour, Shahriar
    Ranjbarvan, Parviz
    Hemmati, Yaser
    Rahnama, Maryam
    Rasmi, Yousef
    Aziz, Shiva Gholizadeh-Ghaleh
    CURRENT STEM CELL RESEARCH & THERAPY, 2025, 20 (01) : 9 - 32
  • [48] Single-cell multiomics to advance cell therapy
    Goss, Kyndal
    Horwitz, Edwin M.
    CYTOTHERAPY, 2025, 27 (02) : 137 - 145
  • [49] Single-cell sequencing in stem cell biology
    Wen, Lu
    Tang, Fuchou
    GENOME BIOLOGY, 2016, 17
  • [50] Confronting false discoveries in single-cell differential expression
    Squair, Jordan W.
    Gautier, Matthieu
    Kathe, Claudia
    Anderson, Mark A.
    James, Nicholas D.
    Hutson, Thomas H.
    Hudelle, Remi
    Qaiser, Taha
    Matson, Kaya J. E.
    Barraud, Quentin
    Levine, Ariel J.
    La Manno, Gioele
    Skinnider, Michael A.
    Courtine, Gregoire
    NATURE COMMUNICATIONS, 2021, 12 (01)