Human gene correlation analysis (HGCA): A tool for the identification of transcriptionally co-expressed genes

被引:25
作者
Ioannis Michalopoulos
Georgios A Pavlopoulos
Apostolos Malatras
Alexandros Karelas
Myrto-Areti Kostadima
Reinhard Schneider
Sophia Kossida
机构
[1] Cryobiology of Stem Cells, Centre of Immunology and Transplantation, Academy of Athens, Athens, 11527
[2] ESAT-SCD/IBBT-K.U. Leuven Future Health Department, Katholieke Universiteit Leuven, Heverlee-Leuven, 3001
[3] Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens
[4] Wellcome Trust Genome Campus, European Bioinformatics Institute, Cambridge
[5] Bioinformatics and Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, 11527
[6] Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117
[7] Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, Esch sur Alzette, L-4362
关键词
Functional annotation; Gene annotation; Gene coexpression; Microarray analysis;
D O I
10.1186/1756-0500-5-265
中图分类号
学科分类号
摘要
Background: Bioinformatics and high-throughput technologies such as microarray studies allow the measure of the expression levels of large numbers of genes simultaneously, thus helping us to understand the molecular mechanisms of various biological processes in a cell. Findings: We calculate the Pearson Correlation Coefficient (r-value) between probe set signal values from Affymetrix Human Genome Microarray samples and cluster the human genes according to the r-value correlation matrix using the Neighbour Joining (NJ) clustering method. A hyper-geometric distribution is applied on the text annotations of the probe sets to quantify the term overrepresentations. The aim of the tool is the identification of closely correlated genes for a given gene of interest and/or the prediction of its biological function, which is based on the annotations of the respective gene cluster. Conclusion: Human Gene Correlation Analysis (HGCA) is a tool to classify human genes according to their coexpression levels and to identify overrepresented annotation terms in correlated gene groups. It is available at: http://biobank-informatics.bioacademy.gr/coexpression/. © 2012 Michalopoulos et al.: licensee BioMed Central Ltd.
引用
收藏
相关论文
共 71 条
  • [1] Jen C.-H., Manfield I.W., Michalopoulos I., Pinney J.W., Willats W.G.T., Gilmartin P.M., Westhead D.R., The Arabidopsis co-expression tool (ACT): A WWW-based tool and database for microarray-based gene expression analysis, Plant Journal, 46, 2, pp. 336-348, (2006)
  • [2] Manfield I.W., Jen C.-H., Pinney J.W., Michalopoulos I., Bradford J.R., Gilmartin P.M., Westhead D.R., Arabidopsis Co-expression Tool (ACT): Web server tools for microarray-based gene expression analysis, Nucleic Acids Research, 34, (2006)
  • [3] Toufighi K., Brady S.M., Austin R., Ly E., Provart N.J., The botany array resource: E-Northerns, expression angling, and promoter analyses, Plant Journal, 43, 1, pp. 153-163, (2005)
  • [4] Obayashi T., Hayashi S., Saeki M., Ohta H., Kinoshita K., ATTED-II provides coexpressed gene networks for Arabidopsis, Nucleic Acids Res, 37, (2009)
  • [5] Obayashi T., Kinoshita K., Nakai K., Shibaoka M., Hayashi S., Saeki M., Shibata D., Saito K., Ohta H., ATTED-II: A database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis, Nucleic Acids Research, 35, SUPPL. 1, (2007)
  • [6] Zimmermann P., Hirsch-Hoffmann M., Hennig L., Gruissem W., GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox, Plant Physiology, 136, 1, pp. 2621-2632, (2004)
  • [7] Steinhauser D., Usadel B., Luedemann A., Thimm O., Kopka J., CSB.DB: A comprehensive systems-biology database, Bioinformatics, 20, 18, pp. 3647-3651, (2004)
  • [8] Usadel B., Obayashi T., Mutwil M., Giorgi F.M., Bassel G.W., Tanimoto M., Chow A., Steinhauser D., Persson S., Provart N.J., Co-expression tools for plant biology: Opportunities for hypothesis generation and caveats, Plant Cell Environ, 32, pp. 1633-1651, (2009)
  • [9] Su A.I., Wiltshire T., Batalov S., Lapp H., Ching K.A., Block D., Zhang J., Soden R., Hayakawa M., Kreiman G., Cooke M.P., Walker J.R., Hogenesch J.B., A gene atlas of the mouse and human protein-encoding transcriptomes, Proceedings of the National Academy of Sciences of the United States of America, 101, 16, pp. 6062-6067, (2004)
  • [10] Obayashi T., Hayashi S., Shibaoka M., Saeki M., Ohta H., Kinoshita K., COXPRESdb: A database of coexpressed gene networks in mammals, Nucleic Acids Res, 36, (2008)