A novel pseudo differential transconductor for IEEE 802.11 WLANs

被引:0
|
作者
Xu Cheng
机构
[1] China Academy of Engineering Physics,Semiconductor Device Research Laboratory, Terahertz Science and Technology Research Center
来源
Analog Integrated Circuits and Signal Processing | 2014年 / 81卷
关键词
Transconductor; Analog filter; Source degeneration; Predistortion; Current division;
D O I
暂无
中图分类号
学科分类号
摘要
A novel pseudo differential transconductor for multi-mode analog baseband channel selection filter is presented. The highly linear transconductor is designed based on the dynamic source degeneration and predistortion cancellation technique. Meanwhile, wide tuning range is achieved with the current division technique. An LC ladder third-order Butterworth low-pass filter implemented with transconductors and capacitors was fabricated by TSMC 0.18-μm CMOS process. The results show that the filter can operate with the cutoff frequency ranging from 4 to 20 MHz. The tuning range is wide enough for the specifications of IEEE 802.11a/b/g/n Wireless LANs under the consideration of low power consumption and linearity requirement. The maximum power consumption is 3.61 mA at the cutoff frequency of 20 MHz.
引用
收藏
页码:385 / 391
页数:6
相关论文
共 50 条
  • [21] A novel adaptive scheme to improve the performance of the IEEE 802.11n WLANs
    Parthasarathy, Sangheetha Salai
    Zeng, Qing-An
    21ST INTERNATIONAL CONFERENCE ON ADVANCED NETWORKING AND APPLICATIONS WORKSHOPS/SYMPOSIA, VOL 2, PROCEEDINGS, 2007, : 334 - +
  • [22] Simultaneous handover scheme for IEEE 802.11 WLANs with IEEE 802.21 triggers
    Przemysław Machań
    Józef Woźniak
    Telecommunication Systems, 2010, 43
  • [23] Simultaneous handover scheme for IEEE 802.11 WLANs with IEEE 802.21 triggers
    Machan, Przemyslaw
    Wozniak, Jozef
    TELECOMMUNICATION SYSTEMS, 2010, 43 (1-2) : 83 - 93
  • [24] IEEE 802.11 WLANS: A COMPARISON ON INDOOR COVERAGE MODELS
    Andrade, Cassio Bento
    Fabris Hoefel, Roger Pierre
    2010 23RD CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2010,
  • [25] An Accurate Model for Energy Efficiency in IEEE 802.11 WLANs
    Davri, Eleni-Constantina
    Kafetzakis, Emmanouil
    Kontovasilis, Kimon
    Skianis, Charalabos
    2014 IEEE 19TH INTERNATIONAL WORKSHOP ON COMPUTER AIDED MODELING AND DESIGN OF COMMUNICATION LINKS AND NETWORKS (CAMAD), 2014, : 385 - 389
  • [26] Cell-level modeling of IEEE 802.11 WLANs
    Panda, Manoj
    Kumar, Anurag
    AD HOC NETWORKS, 2015, 25 : 84 - 101
  • [27] Limitations and capabilities of QoS support in IEEE 802.11 WLANs
    Villalón, J
    Cuenca, P
    Orozco-Barbosa, L
    2005 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2005, : 633 - 636
  • [28] Spatial Reuse in IEEE 802.11ax WLANs
    Wilhelmi, Francesc
    Barrachina-Munoz, Sergio
    Cano, Cristina
    Selinis, Ioannis
    Bellalta, Boris
    COMPUTER COMMUNICATIONS, 2021, 170 (170) : 65 - 83
  • [29] Industrial Applications of IEEE 802.11e WLANs
    Cena, G.
    Bertolotti, I. Cibrario
    Valenzano, A.
    Zunino, C.
    WFCS 2008: IEEE INTERNATIONAL WORKSHOP ON FACTORY COMMUNICATION SYSTEMS, PROCEEDINGS, 2008, : 129 - 138
  • [30] On the Feasibility of Indoor IEEE 802.11ad WLANs
    Saha, Swetank Kumar
    Vira, Viral Vijay
    Garg, Anuj
    Tennenbaum, Andrew
    Koutsonikolas, Dimitrios
    2015 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2015, : 107 - 108