Generalized periodic orbits in some restricted three-body problems

被引:0
作者
Rafael Ortega
Lei Zhao
机构
[1] Universidad de Granada,Departamento de Matemática Aplicada
[2] Universität Augsburg,Institut für Mathematik
来源
Zeitschrift für angewandte Mathematik und Physik | 2021年 / 72卷
关键词
Forced Kepler problem; Restricted three-body problem; Generalized periodic orbits; Kustaanheimo–Stiefel Regularization; 70F15; 70F16;
D O I
暂无
中图分类号
学科分类号
摘要
We treat the circular and elliptic restricted three-body problems in inertial frames as periodically forced Kepler problems with additional singularities and explain that in this setting the main result of Boscaggin et al. (Trans Am Math Soc 372: 677–703, 2019) is applicable. This guarantees the existence of an arbitrary large number of generalized periodic orbits (periodic orbits with possible double collisions regularized) provided the mass ratio of the primaries is small enough.
引用
收藏
相关论文
共 19 条
[1]  
Antoniadou KI(2018)Origin and continuation of 3/2, 5/2, 3/1, 4/1 and 5/1 resonant periodic orbits in the circular and elliptic restricted three-body problem Celest. Mech. Dyn. Astron. 130 41-314
[2]  
Libert A-S(2020)Periodic solutions to a forced Kepler problem in the plane Proc. Am. Math. Soc. 148 301-703
[3]  
Boscaggin A(2019)Periodic solutions and regularization of a Kepler problem with time-dependent perturbation Trans. Am. Math. Soc. 372 677-19
[4]  
Dambrosio W(2005)Analytic continuation in the case of non-regular dependency on a small parameter with an application to celestial mechanics J. Differ. Eq. 219 1-176
[5]  
Papini D(2011)Linear motions in a periodically forced Kepler problem Port. Math. 68 149-24
[6]  
Boscaggin A(2006)Searching for periodic orbits of the spatial elliptic restricted three-body problem by double averaging Physica D 213 15-57
[7]  
Ortega R(1973)Normal modes for nonlinear Hamiltonian systems Invent. Math. 20 47-49
[8]  
Zhao L(2016)Some collision solutions of the rectilinear periodically forced Kepler problem Adv. Nonlinear Stud. 16 45-36
[9]  
Cors JM(2015)Kustaanheimo–Stiefel regularization and the quadrupolar conjugacy Regul. Chaotic Dyn. 20 19-undefined
[10]  
Pinyol C(undefined)undefined undefined undefined undefined-undefined