Dual Lie bialgebra structures of Poisson types

被引:0
作者
Guang’Ai Song
YuCai Su
机构
[1] Shandong Institute of Business and Technology,College of Mathematics and Information Science
[2] Tongji University,Department of Mathematics
来源
Science China Mathematics | 2015年 / 58卷
关键词
Poisson algebra; Virasoro-like algebra; Lie bialgebra; dual Lie bialgebra; good subspace; 17B62; 17B05; 17B06;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A} = \mathbb{F}[x,y]$\end{document} be the polynomial algebra on two variables x, y over an algebraically closed field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document} of characteristic zero. Under the Poisson bracket, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} is equipped with a natural Lie algebra structure. It is proven that the maximal good subspace of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}*$\end{document} induced from the multiplication of the associative commutative algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} coincides with the maximal good subspace of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}*$\end{document} induced from the Poisson bracket of the Poisson Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document}. Based on this, structures of dual Lie bialgebras of the Poisson type are investigated. As by-products, five classes of new infinite-dimensional Lie algebras are obtained.
引用
收藏
页码:1151 / 1162
页数:11
相关论文
共 51 条
[21]  
Su Y C(2002)Indecomposable modules of the intermediate series over J Algebra 252 1-19
[22]  
Song G A(1993)( J Pure Appl Algebra 87 301-312
[23]  
Su Y C(2001)) Ann Polon Math 76 77-87
[24]  
Song G A(2006)Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series Acta Math Sinica Engl Ser 22 1915-1922
[25]  
Su Y C(2007)Witt and Virasoro algebras as Lie bialgebras Sci China Ser A 50 1267-1279
[26]  
Wu Y Z(2000)The sixtieth anniversary of the Jacobian conjecture: A new approach, polynomial automorphisms and related topics J Algebra 224 23-58
[27]  
Su Y C(1997)Lie bialgebras of generalized Virasoro-like type J Algebra 88 90-96
[28]  
Su Y C(undefined)Hamiltonian type Lie bialgebras undefined undefined undefined-undefined
[29]  
Xia C G(undefined)New generalized simple Lie algebras of Cartan type over a field with characteristic 0 undefined undefined undefined-undefined
[30]  
Xu Y(undefined)Remarks on the Jacobian conjecture undefined undefined undefined-undefined