Dual Lie bialgebra structures of Poisson types

被引:0
作者
Guang’Ai Song
YuCai Su
机构
[1] Shandong Institute of Business and Technology,College of Mathematics and Information Science
[2] Tongji University,Department of Mathematics
来源
Science China Mathematics | 2015年 / 58卷
关键词
Poisson algebra; Virasoro-like algebra; Lie bialgebra; dual Lie bialgebra; good subspace; 17B62; 17B05; 17B06;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A} = \mathbb{F}[x,y]$\end{document} be the polynomial algebra on two variables x, y over an algebraically closed field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document} of characteristic zero. Under the Poisson bracket, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} is equipped with a natural Lie algebra structure. It is proven that the maximal good subspace of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}*$\end{document} induced from the multiplication of the associative commutative algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} coincides with the maximal good subspace of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}*$\end{document} induced from the Poisson bracket of the Poisson Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document}. Based on this, structures of dual Lie bialgebras of the Poisson type are investigated. As by-products, five classes of new infinite-dimensional Lie algebras are obtained.
引用
收藏
页码:1151 / 1162
页数:11
相关论文
共 51 条
[1]  
Ai C R(2014)Regularity of vertex operator superalgebras Sci China Math 57 1025-1032
[2]  
Han J Z(1985)Generalized dual coalgebras of algebras, with applications to cofree coalgebras J Pure Appl Algebra 36 15-21
[3]  
Block R E(1985)Commutative Hopf algebras, Lie coalgebras, and divided powers J Algebra 96 275-306
[4]  
Leroux P(2014)Left-symmetric algebra structures on the twisted Heisenberg-Virasoro algebra Sci China Math 57 469-476
[5]  
Block R E(1995)On the definition of the dual Lie coalgebra of a Lie algebra Publ Mat 39 349-354
[6]  
Chen H J(2014)Irreducible quasi-finite representations of a block type Lie algebra Comm Algebra 42 511-527
[7]  
Li J B(2002)The dual coalgebra of certain infinite-dimensional Lie algebras Comm Algebra 30 5715-5724
[8]  
Diarra B(1994)A class of infinite dimensional Lie bialgebras containing the Virasoro algebras Adv Math 107 365-392
[9]  
Gao M(2000)Classification of the Lie bialgebra structures on the Witt and Virasoro algebras J Pure Appl Algebra 151 67-88
[10]  
Gao Y(1990)The structure of the dual Lie coalgebra of the Witt algebras J Pure Appl Algebra 68 359-364