On the exact values of the best approximations of classes of differentiable periodic functions by splines

被引:0
作者
V. F. Babenko
N. V. Parfinovich
机构
[1] Dnepropetrovsk National University,Institute of Applied Mathematics and Mechanics
[2] National Academy of Sciences of Ukraine,undefined
来源
Mathematical Notes | 2010年 / 87卷
关键词
best approximation; differentiable periodic function; polynomial spline; Kolmogorov width; modulus of continuity; extremal subspace; Jackson-type inequality; the space L; Sobolev class W; the space L; Orlicz space;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the exact values of the best L1-approximations of classes WrF, r ∈ ℕ, of periodic functions whose rth derivative belongs to a given rearrangement-invariant set F, as well as of classes WrHω of periodic functions whose rth derivative has a given convex (upward) majorant ω(t) of the modulus of continuity, by subspaces of polynomial splines of order m ≥ r + 1 and of deficiency 1 with nodes at the points 2kπ/n and 2kπ/n + h, n ∈ ℕ, k ∈ ℤ, h ∈ (0, 2π/n). It is shown that these subspaces are extremal for the Kolmogorov widths of the corresponding functional classes.
引用
收藏
页码:623 / 635
页数:12
相关论文
共 16 条
[1]  
Babenko V. F.(1987)Approximations, widths, and optimal quadrature formulae for classes of periodic functions with rearrangement-invariant sets of derivatives Anal. Math. 13 281-306
[2]  
Babenko V. F.(2009)Exact values of best approximations for classes of periodic functions by splines of deficiency 2 Mat. Zametki 85 538-551
[3]  
Parfinovich N. V.(1946)Approximation of functions in the mean by trigonometrical polynomials Izv. Akad. Nauk SSSR Ser. Mat. 10 207-256
[4]  
Nikol’skii S. M.(1976)Inequalities for upper bounds for functions Anal. Math. 2 11-40
[5]  
Ligun A. A.(1970)The width of the class Mat. Zametki 7 43-52
[6]  
Subbotin Yu. N.(1972) in Mat. Sb. 87 136-142
[7]  
Makovoz Yu. I.(1980)(0, 2 Mat. Zametki 27 61-75
[8]  
Ligun A. A.(1979)) and approximation by spline functions Mat. Zametki 26 805-812
[9]  
Makovoz Yu. I.(1979)On a method for estimation from below of diameters of sets in Banach spaces J. Analyse Math. 35 209-235
[10]  
Pinkus A.(1970)Diameters of certain classes of differentiable periodic functions Dokl. Akad. Nauk SSSR 190 269-271