μ→eγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e \gamma $$\end{document} and matching at mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{m_W}$$\end{document}

被引:0
作者
Sacha Davidson
机构
[1] IPNL,
[2] CNRS/IN2P3,undefined
[3] Université Lyon 1,undefined
[4] Université de Lyon,undefined
来源
The European Physical Journal C | 2016年 / 76卷 / 7期
关键词
D O I
10.1140/epjc/s10052-016-4207-5
中图分类号
学科分类号
摘要
Several experiments search for μ↔e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \leftrightarrow e$$\end{document} flavour change, for instance in μ→econversion\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e ~\mathrm{conversion}$$\end{document}, μ→eγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e \gamma $$\end{document} and μ→ee¯e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e \bar{e} e$$\end{document}. This paper studies how to translate these experimental constraints from low energy to a New Physics scale M≫mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M \gg m_W$$\end{document}. A basis of QCD ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} QED-invariant operators (as appropriate below mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_W$$\end{document}) is reviewed, then run to mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_W$$\end{document} with one-loop Renormalisation Group Equations (RGEs) of QCD and QED. At mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_W$$\end{document}, these operators are matched onto SU(2)-invariant dimension-six operators, which can continue to run up with electroweak RGEs. As an example, the μ→eγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e \gamma $$\end{document} bound is translated to the scale M, where it constrains two sums of operators. The constraints differ from those obtained in previous EFT analyses of μ→eγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e \gamma $$\end{document}, but they reproduce the expected bounds on flavour-changing interactions of the Z and the Higgs, because the matching at mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_W$$\end{document} is pragmatically performed to the loop order required to get the “leading” contribution.
引用
收藏
相关论文
共 106 条
[31]  
Nomura D(2015)QED logarithms in the electroweak corrections to the muon anomalous magnetic moment Phys. Rev. D 92 075021-undefined
[32]  
Hisano J(1996)The Rev. Mod. Phys. 68 1125-undefined
[33]  
Tobe K(1989) decay in a systematic effective field theory approach with dimension 6 operators Nucl. Phys. B 325 33-undefined
[34]  
Abada A(1978)Lepton flavor violation in the standard model with general dimension-six operators Phys. Lett. B 78 443-undefined
[35]  
Biggio C(2010)Lepton flavor violating Phys. Rev. D 82 115007-undefined
[36]  
Bonnet F(2012)-boson couplings from nonstandard Higgs interactions JHEP 1209 092-undefined
[37]  
Gavela MB(2010)Weak decays beyond leading logarithms Phys. Lett. B 687 139-undefined
[38]  
Hambye T(2014)Electromagnetic corrections to the effective Hamiltonian for strangeness changing decays and JHEP 1410 84-undefined
[39]  
Omura Y(undefined)Remarks on Higgs Boson Interactions with Nucleons undefined undefined undefined-undefined
[40]  
Senaha E(undefined)Gluon contribution to the dark matter direct detection undefined undefined undefined-undefined