μ→eγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e \gamma $$\end{document} and matching at mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{m_W}$$\end{document}

被引:0
作者
Sacha Davidson
机构
[1] IPNL,
[2] CNRS/IN2P3,undefined
[3] Université Lyon 1,undefined
[4] Université de Lyon,undefined
来源
The European Physical Journal C | 2016年 / 76卷 / 7期
关键词
D O I
10.1140/epjc/s10052-016-4207-5
中图分类号
学科分类号
摘要
Several experiments search for μ↔e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \leftrightarrow e$$\end{document} flavour change, for instance in μ→econversion\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e ~\mathrm{conversion}$$\end{document}, μ→eγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e \gamma $$\end{document} and μ→ee¯e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e \bar{e} e$$\end{document}. This paper studies how to translate these experimental constraints from low energy to a New Physics scale M≫mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M \gg m_W$$\end{document}. A basis of QCD ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} QED-invariant operators (as appropriate below mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_W$$\end{document}) is reviewed, then run to mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_W$$\end{document} with one-loop Renormalisation Group Equations (RGEs) of QCD and QED. At mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_W$$\end{document}, these operators are matched onto SU(2)-invariant dimension-six operators, which can continue to run up with electroweak RGEs. As an example, the μ→eγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e \gamma $$\end{document} bound is translated to the scale M, where it constrains two sums of operators. The constraints differ from those obtained in previous EFT analyses of μ→eγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow e \gamma $$\end{document}, but they reproduce the expected bounds on flavour-changing interactions of the Z and the Higgs, because the matching at mW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_W$$\end{document} is pragmatically performed to the loop order required to get the “leading” contribution.
引用
收藏
相关论文
共 106 条
[1]  
Hisano J(1997)Exact event rates of lepton flavor violating processes in supersymmetric SU(5) model Phys. Lett. B 391 341-252
[2]  
Moroi T(2011)Probing the supersymmetric type III seesaw: LFV at low-energies and at the LHC JHEP 1108 099-350
[3]  
Tobe K(2009)Lepton flavour violation in models with A(4) flavour symmetry Nucl. Phys. B 809 218-undefined
[4]  
Yamaguchi M(2006)Testing supersymmetry with lepton flavor violating tau and mu decays Phys. Rev. D 73 055003-undefined
[5]  
Abada A(2004)Anatomy and phenomenology of mu-tau lepton flavor violation in the MSSM Nucl. Phys. B 701 3-undefined
[6]  
Figueiredo AJR(2000)Lepton flavor violation in the supersymmetric standard model with vector like leptons Phys. Rev. D 62 073007-undefined
[7]  
Romao JC(2000)Lepton flavor violation in the Randall-Sundrum model with bulk neutrinos Phys. Lett. B 481 39-undefined
[8]  
Teixeira AM(2012)Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution JHEP 1209 015-undefined
[9]  
Feruglio F(2005)Enhanced lepton flavor violation in the supersymmetric inverse seesaw model Phys. Rev. D 72 036001-undefined
[10]  
Hagedorn C(1996)Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model Phys. Rev. D 53 2442-undefined