Complete convergence of weighted sums for arrays of rowwise φ-mixing random variables

被引:0
作者
Xinghui Wang
Xiaoqin Li
Shuhe Hu
机构
[1] Anhui University,Department of Statistics
来源
Applications of Mathematics | 2014年 / 59卷
关键词
complete convergence; -mixing sequence; Marcinkiewicz-Zygmund type strong law of large numbers; 60B10; 60F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the complete convergence and complete moment convergence of weighted sums for arrays of rowwise φ-mixing random variables, and the Baum-Katz-type result for arrays of rowwise φ-mixing random variables. As an application, the Marcinkiewicz-Zygmund type strong law of large numbers for sequences of φ-mixing random variables is obtained. We extend and complement the corresponding results of X. J. Wang, S. H. Hu (2012).
引用
收藏
页码:589 / 607
页数:18
相关论文
共 46 条
[1]  
Baek J.-I.(2008)On the complete convergence of weighted sums for arrays of negatively associated variables J. Korean Stat. Soc. 37 73-80
[2]  
Choi I.-B.(2010)Convergence of weighted sums for arrays of negatively dependent random variables and its applications RETRACTED. J. Theor. Probab. 23 362-377
[3]  
Niu S.-L.(1965)Convergence rates in the law of large numbers Trans. Am. Math. Soc. 120 108-123
[4]  
Baek J.-I.(2008)On complete convergence for arrays of row-wise negatively associated random variables Theory Probab. Appl. 52 323-328
[5]  
Park S.-T.(2008)Limiting behaviour of moving average processes under negative association assumption Theory Probab. Math. Stat. 77 165-176
[6]  
Baum L. E.(1956)Central limit theorem for non-stationary Markov chains I, II. Teor. Veroyatn. Primen. 1 72-89
[7]  
Katz M.(1949)On a theorem of Hsu and Robbins Ann. Math. Stat. 20 286-291
[8]  
Chen P.(1947)Complete convergence and the law of large numbers Proc. Natl. Acad. Sci. USA 33 25-31
[9]  
Hu T.-C.(2003)Complete convergence for arrays of rowwise independent random variables Commun. Korean Math. Soc. 18 375-383
[10]  
Liu X.(2008)Complete convergence of weighted sums for ϱ*-mixing sequence of random variables Stat. Probab. Lett. 78 1466-1472