We consider the Cauchy problem for the nonlinear differential equation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\varepsilon \frac{{du}}
{{dx}} = f(x,u),u(0,\varepsilon ) = R_0 ,
$$\end{document} where ɛ > 0 is a small parameter, f(x, u) ∈ C∞ ([0, d] × ℝ), R0 > 0, and the following conditions are satisfied: f(x, u) = x − up + O(x2 + |xu| + |u|p+1) as x, u → 0, where p ∈ ℕ \ {1} f(x, 0) > 0 for x > 0; fu2(x, u) < 0 for (x, u) ∈ [0, d] × (0, + ∞); Σ0+∞fu2(x, u) du = −∞. We construct three asymptotic expansions (external, internal, and intermediate) and prove that the matched asymptotic expansion approximates the solution uniformly on the entire interval [0, d].