Characterizing the Difference Between Graph Classes Defined by Forbidden Pairs Including the Claw

被引:0
作者
Guantao Chen
Michitaka Furuya
Songling Shan
Shoichi Tsuchiya
Ping Yang
机构
[1] Georgia State University,Department of Mathematics and Statistics
[2] Kitasato University,College of Liberal Arts and Sciences
[3] Illinois State University,Department of Mathematics
[4] Senshu University,School of Network and Information
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Forbidden subgraph; Hamiltonian cycle; Halin graph;
D O I
暂无
中图分类号
学科分类号
摘要
For two graphs A and B, a graph G is called {A,B}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{A,B\}$$\end{document}-free if G contains neither A nor B as an induced subgraph. Let Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}$$\end{document} denote the path of order n. For nonnegative integers k, ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and m, let Nk,ℓ,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{k,\ell ,m}$$\end{document} be the graph obtained from K3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3}$$\end{document} and three vertex-disjoint paths Pk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{k+1}$$\end{document}, Pℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\ell +1}$$\end{document}, Pm+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{m+1}$$\end{document} by identifying each of the vertices of K3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3}$$\end{document} with one endvertex of one of the paths. Let Zk=Nk,0,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{k}=N_{k,0,0}$$\end{document} and Bk,ℓ=Nk,ℓ,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{k,\ell }=N_{k,\ell ,0}$$\end{document}. Bedrossian characterized all pairs {A,B}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{A,B\}$$\end{document} of connected graphs such that every 2-connected {A,B}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{A,B\}$$\end{document}-free graph is Hamiltonian. All pairs appearing in the characterization involve the claw (K1,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,3}$$\end{document}) and one of N1,1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{1,1,1}$$\end{document}, P6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{6}$$\end{document} and B1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{1,2}$$\end{document}. In this paper, we characterize connected graphs that are (i) {K1,3,Z2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{1,3},Z_{2}\}$$\end{document}-free but not B1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{1,1}$$\end{document}-free, (ii) {K1,3,B1,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{1,3},B_{1,1}\}$$\end{document}-free but not P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{5}$$\end{document}-free, or (iii) {K1,3,B1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{1,3},B_{1,2}\}$$\end{document}-free but not P6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{6}$$\end{document}-free. The third result is closely related to Bedrossian’s characterization. Furthermore, we apply our characterizations to some forbidden pair problems.
引用
收藏
页码:1459 / 1474
页数:15
相关论文
共 15 条
[1]  
Chen G(2017)Forbidden pairs and the existence of a spanning Halin subgraph Graphs Combin. 33 1321-1345
[2]  
Han J(2016)Hamiltonian type properties in claw-free Graphs Combin. 32 1817-1828
[3]  
O S(2018)-free graphs Australas. J. Combin. 72 185-200
[4]  
Shan S(2004)Pancyclic type properties of claw-free Graphs Combin. 20 291-310
[5]  
Tsuchiya S(2015)-free graphs Graphs Combin. 31 2201-2205
[6]  
Crane CB(1988)Generalizing pancyclic and Inform. Process. Lett. 28 53-54
[7]  
Crane CB(2002)-ordered graphs J. Combin. Theory Ser. B 86 331-346
[8]  
Faudree RJ(undefined)Claw-free and undefined undefined undefined-undefined
[9]  
Gould RJ(undefined)-free graphs are almost net-free undefined undefined undefined-undefined
[10]  
Jacobson MS(undefined)Paw-free graph undefined undefined undefined-undefined