Instability in Principal Component Analysis and the Quantification of Polyphenism in Palaeontological Data

被引:0
|
作者
Richard A. Reyment
机构
[1] Naturhistoriska Riksmuseet,Paleozoologiska avdelningen
来源
Mathematical Geology | 2004年 / 36卷
关键词
cross-validation; principal component analysis; ecomorphs; ammonites;
D O I
暂无
中图分类号
学科分类号
摘要
The occurrence of cryptic polyphenism (variation in morphological properties within a single species) in ammonites is used to exemplify the application of the multivariate set of techniques known in analytical chemistry as cross-validation to quantify and isolate deviating specimens (ecomorphs) in a genetically homogeneous sample. A byproduct of the analysis bears on a method of identifying redundant variables. A species of Nigerian Turonian (Cretaceous) ammonites of the genus Thomasites is used in the exemplification.
引用
收藏
页码:629 / 638
页数:9
相关论文
共 50 条
  • [31] Classification of Hyperspectral Data Based on Principal Component Analysis
    Yi, Baolin
    Li, Weiwei
    Du, Jian
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (09): : 3771 - 3777
  • [32] Principal component analysis for grouped data - A case study
    Thalib, L
    Kitching, RL
    Bhatti, MI
    ENVIRONMETRICS, 1999, 10 (05) : 565 - 574
  • [33] Principal component analysis of DNA oligonucleotide structural data
    Bharanidharan, D
    Gautham, N
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 340 (04) : 1229 - 1237
  • [34] AN ALGORITHM FOR THE PRINCIPAL COMPONENT ANALYSIS OF LARGE DATA SETS
    Halko, Nathan
    Martinsson, Per-Gunnar
    Shkolnisky, Yoel
    Tygert, Mark
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) : 2580 - 2594
  • [35] A random version of principal component analysis in data clustering
    Palese, Luigi Leonardo
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2018, 73 : 57 - 64
  • [36] Reversible data hiding based on principal component analysis
    Ma, Ke
    Lu, Ling
    Dai, Jiangyan
    Qi, Miao
    Advances in Information Sciences and Service Sciences, 2012, 4 (23): : 32 - 40
  • [37] Streaming Principal Component Analysis From Incomplete Data
    Eftekhari, Armin
    Ongie, Gregory
    Balzano, Laura
    Wakin, Michael B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [38] Principal Component Analysis of Water Pipe Flow Data
    Park, S.
    Jung, S. -Y.
    16TH WATER DISTRIBUTION SYSTEM ANALYSIS CONFERENCE (WDSA2014): URBAN WATER HYDROINFORMATICS AND STRATEGIC PLANNING, 2014, 89 : 395 - 400
  • [39] Feature selection in principal component analysis of analytical data
    Guo, Q
    Wu, W
    Massart, DL
    Boucon, C
    de Jong, S
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2002, 61 (1-2) : 123 - 132
  • [40] Generalized probabilistic principal component analysis of correlated data
    Gu, Mengyang
    Shen, Weining
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21