Instability in Principal Component Analysis and the Quantification of Polyphenism in Palaeontological Data

被引:0
|
作者
Richard A. Reyment
机构
[1] Naturhistoriska Riksmuseet,Paleozoologiska avdelningen
来源
Mathematical Geology | 2004年 / 36卷
关键词
cross-validation; principal component analysis; ecomorphs; ammonites;
D O I
暂无
中图分类号
学科分类号
摘要
The occurrence of cryptic polyphenism (variation in morphological properties within a single species) in ammonites is used to exemplify the application of the multivariate set of techniques known in analytical chemistry as cross-validation to quantify and isolate deviating specimens (ecomorphs) in a genetically homogeneous sample. A byproduct of the analysis bears on a method of identifying redundant variables. A species of Nigerian Turonian (Cretaceous) ammonites of the genus Thomasites is used in the exemplification.
引用
收藏
页码:629 / 638
页数:9
相关论文
共 50 条
  • [1] Instability in principal component analysis and the quantification of polyphenism in palaeontological data
    Reyment, RA
    MATHEMATICAL GEOLOGY, 2004, 36 (05): : 629 - 638
  • [2] Principal component analysis with autocorrelated data
    Zamprogno, Bartolomeu
    Reisen, Valderio A.
    Bondon, Pascal
    Aranda Cotta, Higor H.
    Reis Jr, Neyval C.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (12) : 2117 - 2135
  • [3] Principal Component Analysis of Thermographic Data
    Winfree, William P.
    Cramer, K. Elliott
    Zalameda, Joseph N.
    Howell, Patricia A.
    Burke, Eric R.
    THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVII, 2015, 9485
  • [4] Synthetic Data by Principal Component Analysis
    Sano, Natsuki
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 101 - 105
  • [5] Quantification of Human Intelligence Using Principal Component Analysis
    Vignesh, M. Vel
    Boolog, Vignesh
    Bagyalakshmi, M.
    Thilaga, M.
    COMMUNICATION AND INTELLIGENT SYSTEMS, VOL 1, ICCIS 2023, 2024, 967 : 225 - 237
  • [6] APPLICATION OF PRINCIPAL COMPONENT ANALYSIS TO THE INTERPRETATION OF RAINWATER COMPOSITIONAL DATA
    ZHANG, PX
    DUDLEY, N
    URE, AM
    LITTLEJOHN, D
    ANALYTICA CHIMICA ACTA, 1992, 258 (01) : 1 - 10
  • [7] Quantification of Sleepiness Through Principal Component Analysis of the Electroencephalographic Spectrum
    Putilov, Arcady A.
    Donskaya, Olga G.
    Verevkin, Evgeniy G.
    CHRONOBIOLOGY INTERNATIONAL, 2012, 29 (04) : 509 - 522
  • [8] Penalized Principal Component Analysis of Microarray Data
    Nikulin, Vladimir
    McLachlan, Geoffrey J.
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, 2010, 6160 : 82 - 96
  • [9] Principal Component Analysis on the Philippine Health Data
    Carillo, M.
    Largo, F.
    Ceballos, R.
    INTERNATIONAL JOURNAL OF ECOLOGICAL ECONOMICS & STATISTICS, 2018, 39 (03) : 91 - 97
  • [10] Probabilistic principal component analysis for metabolomic data
    Gift Nyamundanda
    Lorraine Brennan
    Isobel Claire Gormley
    BMC Bioinformatics, 11