Area Bounds for Minimal Surfaces that Pass Through a Prescribed Point in a Ball

被引:0
作者
Simon Brendle
Pei-Ken Hung
机构
[1] Columbia University,Department of Mathematics
来源
Geometric and Functional Analysis | 2017年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma}$$\end{document} be a k-dimensional minimal submanifold in the n-dimensional unit ball Bn which passes through a point y∈Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y \in B^{n}}$$\end{document} and satisfies ∂Σ⊂∂Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \Sigma \subset \partial B^{n}}$$\end{document}. We show that the k-dimensional area of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma}$$\end{document} is bounded from below by |Bk|(1-|y|2)k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{|B^{k}| (1-|y|^{2})}^{\frac{k}{2}}}$$\end{document}. This settles a question left open by the work of Alexander and Osserman in 1973.
引用
收藏
页码:235 / 239
页数:4
相关论文
共 50 条
[41]   INDEX BOUNDS FOR FREE BOUNDARY MINIMAL SURFACES OF CONVEX BODIES [J].
Sargent, Pam .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (06) :2467-2480
[42]   Free boundary minimal surfaces in the unit 3-ball [J].
Abigail Folha ;
Frank Pacard ;
Tatiana Zolotareva .
manuscripta mathematica, 2017, 154 :359-409
[43]   Complete nonorientable minimal surfaces in a ball of R3 [J].
Lopez, F. J. ;
Martin, Francisco ;
Morales, Santiago .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (09) :3807-3820
[44]   Free boundary minimal surfaces in the unit 3-ball [J].
Folha, Abigail ;
Pacard, Frank ;
Zolotareva, Tatiana .
MANUSCRIPTA MATHEMATICA, 2017, 154 (3-4) :359-409
[45]   FREE BOUNDARY MINIMAL SURFACES IN THE UNIT BALL WITH LOW COHOMOGENEITY [J].
Freidin, Brian ;
Gulian, Mamikon ;
Mcgrath, Peter .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) :1671-1683
[46]   Extremal Eigenvalue Problems and Free Boundary Minimal Surfaces in the Ball [J].
Fraser, Ailana .
GEOMETRIC ANALYSIS, 2020, 2263 :1-40
[47]   ON THE STRUCTURE OF THE SET OF CURVES BOUNDING MINIMAL-SURFACES OF PRESCRIBED DEGENERACY [J].
TOMI, F ;
TROMBA, AJ .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1980, 316 :31-43
[49]   Oriented Mixed Area and Discrete Minimal Surfaces [J].
Mueller, Christian ;
Wallner, Johannes .
DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 43 (02) :303-320
[50]   Complete minimal surfaces in R3 with a prescribed coordinate function [J].
Alarcon, Antonio ;
Fernandez, Isabel .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 :S9-S15