Area Bounds for Minimal Surfaces that Pass Through a Prescribed Point in a Ball

被引:0
作者
Simon Brendle
Pei-Ken Hung
机构
[1] Columbia University,Department of Mathematics
来源
Geometric and Functional Analysis | 2017年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma}$$\end{document} be a k-dimensional minimal submanifold in the n-dimensional unit ball Bn which passes through a point y∈Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y \in B^{n}}$$\end{document} and satisfies ∂Σ⊂∂Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \Sigma \subset \partial B^{n}}$$\end{document}. We show that the k-dimensional area of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma}$$\end{document} is bounded from below by |Bk|(1-|y|2)k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{|B^{k}| (1-|y|^{2})}^{\frac{k}{2}}}$$\end{document}. This settles a question left open by the work of Alexander and Osserman in 1973.
引用
收藏
页码:235 / 239
页数:4
相关论文
共 50 条
[31]   BOUNDS FOR THE MORSE INDEX OF FREE BOUNDARY MINIMAL SURFACES [J].
Lima, Vanderson .
ASIAN JOURNAL OF MATHEMATICS, 2022, 26 (02) :227-252
[32]   A Family of Free Boundary Minimal Surfaces in the Unit Ball [J].
Siffert, Anna ;
Wuzyk, Jan .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (08)
[33]   Triangular Bezier surfaces of minimal area [J].
Arnal, A ;
Lluch, A ;
Monterde, J .
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCA 2003, PT 3, PROCEEDINGS, 2003, 2669 :366-375
[34]   The area and boundary of minimal surfaces. [J].
Beckenbach, EF .
ANNALS OF MATHEMATICS, 1932, 33 :658-664
[35]   Visualization of calculation of minimal area surfaces [J].
Klyachin, A. ;
Klyachin, V. ;
Grigorieva, E. .
Scientific Visualization, 2014, 6 (02) :34-42
[36]   On Parabolicity and Area Growth of Minimal Surfaces [J].
Robert W. Neel .
Journal of Geometric Analysis, 2013, 23 :1173-1188
[37]   On Parabolicity and Area Growth of Minimal Surfaces [J].
Neel, Robert W. .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) :1173-1188
[38]   ON THE ANALYTICITY OF MINIMAL-SURFACES AT MOVABLE BOUNDARIES OF PRESCRIBED LENGTH [J].
DIERKES, U ;
HILDEBRANDT, S ;
LEWY, H .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1987, 379 :100-114
[39]   Examples of embedded minimal tori without area bounds [J].
Colding, TH ;
Minicozzi, WP .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (20) :1097-1100
[40]   On Steklov eigenspaces for free boundary minimal surfaces in the unit ball [J].
Kusner, Robert ;
McGrath, Peter .
AMERICAN JOURNAL OF MATHEMATICS, 2024, 146 (05) :1275-1293