Area Bounds for Minimal Surfaces that Pass Through a Prescribed Point in a Ball

被引:0
作者
Simon Brendle
Pei-Ken Hung
机构
[1] Columbia University,Department of Mathematics
来源
Geometric and Functional Analysis | 2017年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma}$$\end{document} be a k-dimensional minimal submanifold in the n-dimensional unit ball Bn which passes through a point y∈Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y \in B^{n}}$$\end{document} and satisfies ∂Σ⊂∂Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \Sigma \subset \partial B^{n}}$$\end{document}. We show that the k-dimensional area of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma}$$\end{document} is bounded from below by |Bk|(1-|y|2)k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{|B^{k}| (1-|y|^{2})}^{\frac{k}{2}}}$$\end{document}. This settles a question left open by the work of Alexander and Osserman in 1973.
引用
收藏
页码:235 / 239
页数:4
相关论文
共 50 条
[21]   A remark on a curvature gap for minimal surfaces in the ball [J].
Barbosa, Ezequiel ;
Viana, Celso .
MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (1-2) :713-720
[22]   Bounds for Degrees of Minimal μ-bases of Parametric Surfaces [J].
Cortadellas, Teresa ;
D'Andrea, Carlos ;
Eulalia Montoro, M. .
PROCEEDINGS OF THE 45TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2020, 2020, :107-113
[23]   AREA BOUNDS FOR VARIOUS CLASSES OF SURFACES [J].
ALEXANDER, H ;
OSSERMAN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (03) :753-769
[24]   Bodies of minimal resistance under prescribed surface area [J].
Ferone, V ;
Kawohl, B .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1999, 79 (04) :277-280
[26]   On the branch point index of minimal surfaces [J].
Hildebrandt, Stefan ;
Tromba, Anthony J. .
ARCHIV DER MATHEMATIK, 2009, 92 (05) :493-500
[27]   On the branch point index of minimal surfaces [J].
Stefan Hildebrandt ;
Anthony J. Tromba .
Archiv der Mathematik, 2009, 92 :493-500
[28]   A Family of Free Boundary Minimal Surfaces in the Unit Ball [J].
Anna Siffert ;
Jan Wuzyk .
The Journal of Geometric Analysis, 2022, 32
[29]   UPPER-BOUNDS FOR THE INDEX OF MINIMAL-SURFACES [J].
SAKAKI, M .
TOHOKU MATHEMATICAL JOURNAL, 1990, 42 (03) :339-349
[30]   GENUS BOUNDS FOR MIN-MAX MINIMAL SURFACES [J].
Ketover, Daniel .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 112 (03) :555-590