Area Bounds for Minimal Surfaces that Pass Through a Prescribed Point in a Ball

被引:0
|
作者
Simon Brendle
Pei-Ken Hung
机构
[1] Columbia University,Department of Mathematics
来源
Geometric and Functional Analysis | 2017年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma}$$\end{document} be a k-dimensional minimal submanifold in the n-dimensional unit ball Bn which passes through a point y∈Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y \in B^{n}}$$\end{document} and satisfies ∂Σ⊂∂Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \Sigma \subset \partial B^{n}}$$\end{document}. We show that the k-dimensional area of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma}$$\end{document} is bounded from below by |Bk|(1-|y|2)k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{|B^{k}| (1-|y|^{2})}^{\frac{k}{2}}}$$\end{document}. This settles a question left open by the work of Alexander and Osserman in 1973.
引用
收藏
页码:235 / 239
页数:4
相关论文
共 50 条