On the Structure of Ternary Clifford Algebras and Their Irreducible Representations

被引:0
作者
Rafał Abłamowicz
机构
[1] ICCA2020,
来源
Advances in Applied Clifford Algebras | 2022年 / 32卷
关键词
-graded algebra; Center; Graded algebra morphism; Central idempotent; Involution; Irreducible representation; Opposite algebra; Primitive idempotent; Ternary Clifford algebra; Primary 15A66; 16W50; 20C05; 20C15; 20D15; Secondary 20C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let Cℓd13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \ell _{d}^{\frac{1}{3}}$$\end{document} be the complex ternary Clifford algebra on d generators as defined in Cerejeiras and Vajiac (Adv Appl Clifford Algebras 31:13, 2021). The main objective of this work is to investigate algebraic structure of these algebras and present a new Structure Theorem. In particular, it is shown that when d is even, the algebras are central simple (CSA/C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}), and when d is odd (d>1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d>1)$$\end{document} then the algebras are direct sums of three simple ideals, each being isomorphic to a ternary Clifford algebra Cℓd-113\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \ell _{d-1}^{\frac{1}{3}}$$\end{document}. In the latter case, each simple ideal is generated by a central primitive idempotent as, for each d, there are exactly three central primitive orthogonal idempotents which decompose the algebra unit. A formula is given for computing these idempotents for each odd d(d>1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d>1)$$\end{document}. We conclude that Cℓ2k13≅Mat(3k,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \ell _{2k}^{\frac{1}{3}} \cong \mathop {\mathrm{Mat}}\nolimits (3^k,{\mathbb {C}})$$\end{document} and Cℓ2k+113≅3Mat(3k,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \ell _{2k+1}^{\frac{1}{3}} \cong {}^3 \mathop {\mathrm{Mat}}\nolimits (3^k,{\mathbb {C}})$$\end{document}. We describe an algorithm for finding a complete set of 3k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^k$$\end{document} orthogonal primitive idempotents in Cℓ2k13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \ell _{2k}^{\frac{1}{3}}$$\end{document}. Each such idempotent generates a minimal left (or right) ideal which carries an irreducible faithful representation of Cℓ2k13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \ell _{2k}^{\frac{1}{3}}$$\end{document}. This allows us then to find irreducible representations of Cℓ2k+113\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \ell _{2k+1}^{\frac{1}{3}}$$\end{document} in minimal left (or right) ideals. This paper is a continuation of Abl amowicz (Adv Appl Clifford Algebras 31: 62, 2021).
引用
收藏
相关论文
共 14 条
  • [1] Abłamowicz R(1998)Spinor representations of Clifford algebras: a symbolic approach Comput. Phys. Commun. Thematic. Issue. Comput. Algebra. Phys. Res. 115 510-535
  • [2] Abłamowicz R(2021)On ternary Clifford algebras on two generators defined by extra-special Adv. Appl. Clifford Algebras 31 62-1669
  • [3] Abłamowicz R(2018)-groups of order Adv. Appl. Clifford Algebras 28 38-411
  • [4] Varahagiri M(1997)A classification of Clifford algebras as images of group algebras of Salingaros vee groups J. Math. Phys. 38 1650-454
  • [5] Walley AM(2021)Hypersymmetry: a Adv. Appl. Clifford Algebras 31 13-146
  • [6] Abramov V(2021)-graded generalization of supersymmetry Adv. Appl. Clifford Algebras 31 4-undefined
  • [7] Kerner R(1992)Ternary Clifford algebras J. Math. Phys. 33 403-undefined
  • [8] Le Roy B(1996)Pseudo-inverses without matrices Lett. Math. Phys. 36 441-undefined
  • [9] Cerejeiras P(2010)-graded algebras and the cubic root of the supersymmetry translations Proc. Math. Phys. Conf. RIMS (Kyoto) 1705 134-undefined
  • [10] Vajiac MB(undefined)-graded exterior differential calculus and gauge theories of higher order undefined undefined undefined-undefined