Effect of Impedance Relaxation in Conductance Mechanisms in TiO2/ITO/ZnO:Al/p-Si Heterostructure

被引:0
作者
M. Nouiri
L. El Mir
机构
[1] Gabes University,Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes
[2] Al Imam Mohammad Ibn Saud Islamic University (IMSIU),Department of Physics, College of Sciences
来源
Journal of Electronic Materials | 2018年 / 47卷
关键词
Si-based heterojunction; electrical characterization; impedance spectroscopy; ZnO/Si; RF magnetron sputtering;
D O I
暂无
中图分类号
学科分类号
摘要
The electrical conduction of a TiO2/ITO/ZnO:Al/p-Si structure under alternating-current excitation was investigated in the temperature range of 80 K to 300 K. The frequency dependence of the capacitance and conductance revealed the response of a thermally activated trap characterized by activation energy of about 140 meV. The frequency dependence of the conductance obeyed the universal dynamic response according to the common relation G=Aωs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G = A\omega^{s} $$\end{document}. The temperature dependence of the frequency exponent s illustrates that, in the low frequency range, conduction is governed by the correlated barrier hopping (CBH) mechanism involving two distinct energy levels for all investigated temperatures. For the high frequency region, conduction takes place according to the overlapping large-polaron tunneling mechanism at low temperatures but the CBH mechanism becomes dominant in the high temperature region. This difference in electrical behavior between low and high temperatures can be attributed to the dominance of dielectric relaxation at low compared with high temperatures.
引用
收藏
页码:3018 / 3025
页数:7
相关论文
共 130 条
  • [1] Belaid H(2015)undefined J. Mater. Sci. Mater. Electron. 26 8272-undefined
  • [2] Nouiri M(2015)undefined Energy Proced. 84 214-undefined
  • [3] Ben Ayadi Z(2009)undefined Mater. Sci. Eng. B 159–160 2-undefined
  • [4] Djessas K(2014)undefined J. Alloys Compd. 613 330-undefined
  • [5] El Mir L(2016)undefined J. Alloys Compd. 691 873-undefined
  • [6] Belaid H(2012)undefined Solid State Sci. 14 121-undefined
  • [7] Nouiri M(2015)undefined Surf. Coat. Technol. 271 156-undefined
  • [8] Ben Ayadi Z(2008)undefined Phys. B Condens. Matter 403 2590-undefined
  • [9] Djessas K(2013)undefined J. Alloys Compd. 550 129-undefined
  • [10] El Mir L(2014)undefined J. Alloys Compd. 584 190-undefined