Some results on strong Randers metrics

被引:0
作者
Xiaohuan Mo
Hongmei Zhu
机构
[1] Peking University,Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences
[2] Henan Normal University,College of Mathematics and Information Science
来源
Periodica Mathematica Hungarica | 2015年 / 71卷
关键词
Complex Finsler manifold; Kähler Randers metric ; Holomorphic sectional curvature; 53C60; 53B40;
D O I
暂无
中图分类号
学科分类号
摘要
Let F:=α+|β|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:=\alpha +|\beta |$$\end{document} be a strong Randers metric on a complex manifold. We show that F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} is Kähler if and only if β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is parallel with respect to α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Furthermore if α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} has constant holomorphic sectional curvature, we show that the following assertions are equivalent: (i) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} is Kähler; (ii) F=|v|2+⟨c,v¯⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F=|v|^{2}+\langle c,\bar{v}\rangle $$\end{document} is a Minkowskian metric unless F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} is usually Kählerian.
引用
收藏
页码:24 / 34
页数:10
相关论文
共 19 条
[1]  
Bao D(2004)Zermelo navigation on Riemannian manifolds J. Differ. Geom. 66 377-435
[2]  
Robles C(2003)Finsler geometry of projectivized vector bundles J. Math. Kyoto Univ. 43 369-410
[3]  
Shen Z(2009)Kähler Finsler metrics are actually strongly Kähler Chin. Ann. Math. Ser. B 30 173-178
[4]  
Cao J(2010)On complex Randers metrics Int. J. Math. 21 971-986
[5]  
Wong P(1983)An obstruction to the existence of Einstein Kähler metrics Invent. Math. 73 437-443
[6]  
Chen B(2010)On characterizations of Randers norms in a Minkowski space Int. J. Math. 21 523-535
[7]  
Shen Y(1997)Kähler-Einstein metrics with positive scalar curvature Invent. Math. 130 1-37
[8]  
Chen B(2011)On weighted complex Randers metrics Osaka J. Math. 48 589-612
[9]  
Shen Y(2009)A vanishing theorem on Kähler Finsler manifolds Differ. Geom. Appl. 27 551-565
[10]  
Futaki A(2011)On real and complex Berwald connections associated to strongly convex weakly Kähler-Finsler metric Differ. Geom. Appl. 29 388-408