Malate is involved in various metabolic pathways, and there are several enzymes that metabolize it. One important malate metabolizing enzyme is NADP-malic enzyme (NADP-ME). NADP-ME functions in many different pathways in plants, having an important role in C4 photosynthesis where it releases the CO2 to be used in carbon fixation by Rubisco. Apart from this specialized role, NADP-ME is thought to fulfill diverse housekeeping functions because of its universal presence in different plant tissues. NADP-ME is induced after wounding or exposure to UV-B radiation. In this way, the enzyme is implicated in defense-related deposition of lignin by providing NADPH for the two NADPH-dependent reductive steps in monolignol biosynthesis. On the other hand, it can supply NADPH for flavonoid biosynthesis as many steps in the flavonoid biosynthesis pathway require reductive power. Pyruvate, another product of NADP-ME reaction, can be used for obtaining ATP through respiration in the mitochondria; and may serve as a precursor for synthesis of phosphoenolpyruvate (PEP). PEP is utilized in the shikimate pathway, leading to the synthesis of aromatic amino acids including phenylalanine, the common substrate for lignin and flavonoid synthesis. Moreover, NADP-ME can be involved in mechanisms producing NADPH for synthesis of activated oxygen species that are produced in order to kill or damage pathogens. In conclusion, an increase in the levels of NADP-ME could provide building blocks and energy for biosynthesis of defense compounds, suggesting a role of malate metabolism in plant defense.