Almost Periodic Solutions to a Stochastic Differential Equation in Hilbert Spaces

被引:2
作者
Yong-Kui Chang
Ruyun Ma
Zhi-Han Zhao
机构
[1] Lanzhou Jiaotong University,Department of Mathematics
[2] Northwest Normal University,Department of Mathematics
来源
Results in Mathematics | 2013年 / 63卷
关键词
Primary 34K14; Secondary 60H10; Stochastic differential equations; quadratic mean almost periodic; analytic semigroups of linear operators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence and uniqueness of quadratic mean almost periodic mild solutions for a class of stochastic differential equations in a real separable Hilbert space. The main technique is based upon an appropriate composition theorem combined with the Banach contraction mapping principle and an analytic semigroup of linear operators.
引用
收藏
页码:435 / 449
页数:14
相关论文
共 60 条
[21]  
Dorogovtsev A.Ya.(2009)A note on the neutral stochastic functional differential equations with infinite delay and Possion jumps in an abstract space Appl. Math. Comput. 210 72-6
[22]  
Ortega O.A.(2006)Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay Rep. Math. Phys. 58 433-1223
[23]  
Diagana T.(2009)On controllability of nonlinear stochastic systems J. Math. Anal. Appl. 356 1-1797
[24]  
Mahop C.M.(2009)Asymptotic stability of impulsive stochastic partial differential equations with infinite delays Stat. Probab. Lett. 79 1219-266
[25]  
N’Guérékata G.M.(2010)Asymptotic stability of nonlinear impulsive stochastic differential equations Taiwan. J. Math. 14 1777-433
[26]  
Diagana T.(1992)Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay Stoch. Stoch. Rep. 38 251-3044
[27]  
Mahop C.M.(2008)Almost periodic solutions of affine stochastic evolutions equations Stoch. Anal. Appl. 26 408-undefined
[28]  
N’Guérékata G.M.(2010)Stochastic differential equations with non-lopschitz coefficients in Hilbert spaces Nonlinear Anal. RWA 11 3037-undefined
[29]  
Toni B.(undefined)Asymptotically almost periodic, almost periodic and pseudo almost periodic mild solutions for neutral differential equations undefined undefined undefined-undefined
[30]  
Govindan T.E.(undefined)undefined undefined undefined undefined-undefined