Almost Periodic Solutions to a Stochastic Differential Equation in Hilbert Spaces

被引:2
作者
Yong-Kui Chang
Ruyun Ma
Zhi-Han Zhao
机构
[1] Lanzhou Jiaotong University,Department of Mathematics
[2] Northwest Normal University,Department of Mathematics
来源
Results in Mathematics | 2013年 / 63卷
关键词
Primary 34K14; Secondary 60H10; Stochastic differential equations; quadratic mean almost periodic; analytic semigroups of linear operators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence and uniqueness of quadratic mean almost periodic mild solutions for a class of stochastic differential equations in a real separable Hilbert space. The main technique is based upon an appropriate composition theorem combined with the Banach contraction mapping principle and an analytic semigroup of linear operators.
引用
收藏
页码:435 / 449
页数:14
相关论文
共 60 条
[1]  
Abbas S.(2008)Almost periodic solutions of neutral functional differential equations Comput. Math. Appl. 55 2593-2601
[2]  
Bahuguna D.(2009)Existence and exponential stability of positive almost periodic solutions for a model of hematopoiesis Boundary Value Probl. Article ID 127510 10-107
[3]  
Alzabut J.O.(1987)A unified approach to abstract linear nonautonomous parabolic equations Rend. Sem. Mat. Univ. Padova 78 47-827
[4]  
Nieto J.J.(2007)Existence of almost periodic solutions to some stochastic differential equations Appl. Anal. 86 819-10
[5]  
Stamov G.Tr.(2007)Square-mean almost periodic solutions nonautonomous stochastic differential equations Electron. J. Differ. Equ. 2007 1-2849
[6]  
Acquistapace P.(2008)Existence of almost periodic solutions to some functional integro-differential stochastic evolution equations Stat. Probab. Lett. 78 2844-19
[7]  
Terreni B.(2008)Existence of Electron. J. Qual. Theory Differ. Equ. 35 1-14
[8]  
Bezandry P.(2009)-almost periodic solutions to a class of nonautonomous stochastic evolution equations Electron. J. Differ. Equ. 2009 1-1511
[9]  
Diagana T.(2011)Existence of quadratic-mean almost periodic solutions to some stochastic hyperbolic differential equations Appl. Math. Comput. 218 1499-30
[10]  
Bezandry P.(1988)Asymptotically almost periodic solutions of stochastic functional differential equations Visnik Kiiv. Univ. Ser. Mat. Mekh. 115 21-96