Development of a Unifying Framework for Modeling Multi-component Diffusion in Polymer Solutions

被引:0
|
作者
George D. Verros
George K. Xentes
机构
[1] Aristotle University of Thessaloniki,Department of Chemistry
来源
关键词
Non-equilibrium thermodynamics; Multi-component diffusion; Polymer solution; Coatings formation; Membrane manufacture; Solvent evaporation;
D O I
暂无
中图分类号
学科分类号
摘要
In this work a unifying framework for modeling multi-component diffusion in mixed solvent polymer solutions is developed by introducing additional restrictions such as the Onsager reciprocal relations (ORR) and the quasi-equilibrium postulate. More specifically, three different multi-component diffusion models, namely the Zielinski and Hanley model, the Dabral et al. theory and the Alsoy–Duda model are revised by using the above restrictions which are based on sound principles of non-equilibrium thermodynamics. Realistic simulations for the solvent(s) evaporation from the water/acetone/cellulose acetate (CA) and formamide/acetone/CA systems were obtained by combining the above multi-component diffusion models with the ORR and the quasi-equilibrium postulate. It is believed that the results of this work could be used to further study diffusion in multi-component systems appearing in coating and membrane formation.
引用
收藏
页码:206 / 226
页数:20
相关论文
共 50 条
  • [21] ON THE MODELING OF THE ADSORPTION OF MULTI-COMPONENT SYSTEMS
    WORCH, E
    ACTA HYDROCHIMICA ET HYDROBIOLOGICA, 1989, 17 (02): : 207 - 216
  • [22] A numerical framework for modeling evaporation and combustion of isolated, multi-component fuel droplets
    Cuoci, Alberto
    Cipriano, Edoardo
    Saufi, Abd Essamade
    Frassoldati, Alessio
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 83
  • [23] Multi-Component Diffusion in the Vicinity of a Growing Crystal
    Helfenritter, Christoph
    Kind, Matthias
    CRYSTALS, 2022, 12 (06)
  • [24] On the validity of the geometric rule in multi-component diffusion
    Verros, George D.
    COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 440 - 443
  • [25] REPLY TO COMMENTS BY YAO ON MULTI-COMPONENT DIFFUSION
    ZIEBOLD, TO
    COOPER, AR
    ACTA METALLURGICA, 1967, 15 (02): : 423 - &
  • [26] The Kirkendall Effect and Multi-component Diffusion Simulations
    Wierzba, Bartek
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 2017, 36 (05) : 447 - 451
  • [27] On the ambipolar constraint in multi-component diffusion problems
    Peerenboom, K. S. C.
    van Dijk, J.
    Goedheer, W. J.
    vander Mullen, J. J. A. M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3651 - 3655
  • [28] Diffusion and phase transformations in multi-component systems
    Inden, G.
    Diffusion and Thermodynamics of Materials, 2007, 263 : 11 - 20
  • [29] Diffusion of elements and vacancies in multi-component systems
    Fischer, F. D.
    Svoboda, J.
    PROGRESS IN MATERIALS SCIENCE, 2014, 60 : 338 - 367
  • [30] Multi-component hierarchically structured polymer brushes
    Yom, Jeannie
    Lane, Sarah M.
    Vaia, Richard A.
    SOFT MATTER, 2012, 8 (48) : 12009 - 12016