Permutation invariant encodings for quantum machine learning with point cloud data

被引:6
作者
Heredge, Jamie [1 ]
Hill, Charles [1 ,2 ]
Hollenberg, Lloyd [1 ]
Sevior, Martin [1 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Quantum machine learning; Quantum computing; Geometric quantum machine learning; Quantum encoding methods; 3D computer vision; Point cloud data;
D O I
10.1007/s42484-024-00156-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum computing offers a potentially powerful new method for performing machine learning. However, several quantum machine learning techniques have been shown to exhibit poor generalisation as the number of qubits increases. We address this issue by demonstrating a permutation invariant quantum encoding method, which exhibits superior generalisation performance, and apply it to point cloud data (three-dimensional images composed of points). Point clouds naturally contain permutation symmetry with respect to the ordering of their points, making them a natural candidate for this technique. Our method captures this symmetry in a quantum encoding that contains an equal quantum superposition of all permutations and is therefore invariant under point order permutation. We test this encoding method in numerical simulations using a quantum support vector machine to classify point clouds drawn from either spherical or toroidal geometries. We show that a permutation invariant encoding improves in accuracy as the number of points contained in the point cloud increases, while non-invariant quantum encodings decrease in accuracy. This demonstrates that by implementing permutation invariance into the encoding, the model exhibits improved generalisation.
引用
收藏
页数:14
相关论文
共 40 条
[1]  
Aleksandrowicz Gadi, 2019, Zenodo, DOI 10.5281/ZENODO.2562110
[2]  
Anand A., 2022, Quantum Image Processing
[3]  
Anschuetz ER, 2023, Arxiv, DOI [arXiv:2211.16998, 10.48550/arXiv.2211.16998, DOI 10.48550/ARXIV.2211.16998]
[4]   Quantum transfer learning for breast cancer detection [J].
Azevedo, Vanda ;
Silva, Carla ;
Dutra, Ines .
QUANTUM MACHINE INTELLIGENCE, 2022, 4 (01)
[5]  
Barenco A, 1996, Arxiv, DOI arXiv:quant-ph/9604028
[6]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[7]  
Bowles J, 2023, Arxiv, DOI arXiv:2302.01365
[8]  
Buzek V, 2000, PHYS REV A, V62, DOI [10.1103/PhysRevA.62.022303, 10.1103/PhysRevA.60.R2626]
[9]  
Cerezo M, 2024, Arxiv, DOI arXiv:2312.09121
[10]   3D Point Cloud Processing and Learning for Autonomous Driving: Impacting Map Creation, Localization, and Perception [J].
Chen, Siheng ;
Liu, Baoan ;
Feng, Chen ;
Vallespi-Gonzalez, Carlos ;
Wellington, Carl .
IEEE SIGNAL PROCESSING MAGAZINE, 2021, 38 (01) :68-86