Asymptotic Behavior of Positive Solutions of a Nonlinear Combined p-Laplacian Equation

被引:0
作者
Habib Mâagli
Rym Chemmam
Sonia Ben Othman
机构
[1] King Abdulaziz University,Department of Mathematics, College of Sciences and Arts, Rabigh Campus
[2] Campus universitaire,Département de Mathématiques, Faculté des Sciences de Tunis
来源
Mediterranean Journal of Mathematics | 2014年 / 11卷
关键词
34B15; 35J65; p-Laplacian; asymptotic behavior; positive solutions; sub and super solution;
D O I
暂无
中图分类号
学科分类号
摘要
For p > 1, we establish existence and asymptotic behavior of a positive continuous solution to the following boundary value problem 1AAΦp(u′)′+a1(r)uα1+a2(r)uα2=0, in(0,∞),limr→0AΦp(u′)(r)=0,limr→∞u(r)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll}\frac{1}{A} \left( A\Phi _{p}(u^{\prime})\right) ^{\prime}+a_{1}(r)u^{\alpha _{1}}+a_{2}(r)u^{\alpha _{2}}=0, \, {\rm in}\, (0,\infty ),\\ {\rm lim}_{r\rightarrow 0} A\Phi _{p}(u^{\prime})(r)=0, {\rm lim}_{r\rightarrow \infty } u(r)=0,\end{array}\right.$$\end{document}where α1,α2<p-1,Φp(t)=t|t|p-2,A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha _{1}, \alpha _{2} < p -1, \Phi _{p}(t) = t|t| ^{p-2},A}$$\end{document} is a positive differentiable function and a1, a2 are two positive functions in Clocγ((0,∞)),0<γ<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_{\rm loc}^{\gamma}((0, \infty )), 0 < \gamma < 1,}$$\end{document} satisfying some appropriate assumptions related to Karamata regular variation theory. Also, we obtain an uniqueness result when α1, α2∈(1-p,p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha _{1}, \alpha _{2} \in (1-p,p-1)}$$\end{document}. Our arguments combine a method of sub and supersolutions with Karamata regular variation theory.
引用
收藏
页码:857 / 872
页数:15
相关论文
共 41 条
[1]  
Agarwal R.P.(2003)Existence theorems for the one-dimensional singular Math. Comput 143 15-38
[2]  
Lü H.(2008)-Laplacian equation with sign changing nonlinearities, Appl Nonlinear Stud. 15 177-189
[3]  
O’Regan D.(1992)Existence results of positive solutions for the radial Manuscripta Math 74 87-106
[4]  
Bachar I.(2006)-Laplacian Discret.Contin. Dyn. Syst. A 15 447-479
[5]  
Ben Othman S.(2013)Sublinear elliptic equations in Mediterr. J. Math. 10 1257-1270
[6]  
Mâagli H.(2011)Existence of radial solutions for the Electron. J. Differ. Equ. 88 1-12
[7]  
Brezis H.(2012)-Laplacian elliptic equations with weights Adv. Nonlinear Anal. 1 301-318
[8]  
Kamin S.(2009)Asymptotic behavior of ground state solutions of some combined nonlinear problems J. Math. Anal. Appl. 351 773-780
[9]  
Calzolari E.(2006)Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems J. Differ. Equ. 223 51-95
[10]  
Filippucci R.(2007)Combined effects in nonlinear singular elliptic problems in a bounded domain J. Math. Anal. Appl. 333 265-273