Application of X-ray computed tomography to analyze the structure of sorghum grain

被引:0
作者
Daniel Crozier
Oscar Riera-Lizarazu
William L. Rooney
机构
[1] Texas A&M University,Department of Soil and Crop Sciences
[2] Texas A&M University,Department of Horticultural Sciences
来源
Plant Methods | / 18卷
关键词
Grain quality; Grain morphology; Phenotyping; Segmentation; Machine learning; Random forest;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[31]   Reconstructing granular particles from X-ray computed tomography using the TWS machine learning tool and the level set method [J].
Lai, Zhengshou ;
Chen, Qiushi .
ACTA GEOTECHNICA, 2019, 14 (01) :1-18
[32]   A Methodology to Automatically Segment 3D Ultrasonic Data Using X-ray Computed Tomography and a Convolutional Neural Network [J].
Caballero, Juan-Ignacio ;
Cosarinsky, Guillermo ;
Camacho, Jorge ;
Menasalvas, Ernestina ;
Gonzalo-Martin, Consuelo ;
Sket, Federico .
APPLIED SCIENCES-BASEL, 2023, 13 (10)
[33]   An Explicit Structural Model of Root Hair and Soil Interactions Parameterised by Synchrotron X-ray Computed Tomography [J].
Keyes, Samuel David ;
Zygalakis, Konstantinos C. ;
Roose, Tiina .
BULLETIN OF MATHEMATICAL BIOLOGY, 2017, 79 (12) :2785-2813
[34]   Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography [J].
Brun, E. ;
Grandl, S. ;
Sztrokay-Gaul, A. ;
Barbone, G. ;
Mittone, A. ;
Gasilov, S. ;
Bravin, A. ;
Coan, P. .
MEDICAL PHYSICS, 2014, 41 (11)
[35]   X-ray computed tomography of gas diffusion layers of PEM fuel cells: Segmentation of the microporous layer [J].
Pfrang, Andreas ;
Didas, Stephan ;
Tsotridis, Georgios .
JOURNAL OF POWER SOURCES, 2013, 235 :81-86
[36]   CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom study [J].
Kopp, Felix K. ;
Catalano, Marco ;
Pfeiffer, Daniela ;
Fingerle, Alexander A. ;
Rummeny, Ernst J. ;
Noel, Peter B. .
MEDICAL PHYSICS, 2018, 45 (10) :4439-4447
[37]   Active yarn meshes for segmentation on X-ray computed tomography of textile composite materials at the mesoscopic scale [J].
Pidou-Brion, Veronique ;
Le Guilloux, Yann .
COMPOSITE STRUCTURES, 2022, 281
[38]   Machine Learning Estimation of Plateau Stress of Aluminum Foam Using X-ray Computed Tomography Images [J].
Hangai, Yoshihiko ;
Ozawa, So ;
Okada, Kenji ;
Tanaka, Yuuki ;
Amagai, Kenji ;
Suzuki, Ryosuke .
MATERIALS, 2023, 16 (05)
[39]   Plateau stress estimation of aluminum foam by machine learning using X-ray computed tomography images [J].
Hangai, Yoshihiko ;
Sakaguchi, Yuki ;
Kitahara, Yuma ;
Takagi, Tatsuki ;
Kenji, Okada ;
Yuuki, Tanaka .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (9-10) :5053-5061
[40]   The interpretation of X-ray Computed Microtomography images of rocks as an application of volume image processing and analysis [J].
Kaczmarczyk, J. ;
Dohnalik, M. ;
Zalewska, J. ;
Cnudde, V. .
WSCG 2010: COMMUNICATION PAPERS PROCEEDINGS, 2010, :23-+