Mitigation of extreme events in an excitable system

被引:3
作者
Shashangan, R. [1 ]
Sudharsan, S. [2 ]
Venkatesan, A. [3 ]
Senthilvelan, M. [1 ]
机构
[1] Bharathidasan Univ, Dept Nonlinear Dynam, Tiruchirappalli 620024, Tamil Nadu, India
[2] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700108, West Bengal, India
[3] Nehru Mem Coll Autonomous, Dept Phys, Tiruchirappalli 621007, Tamil Nadu, India
关键词
DEEP BRAIN-STIMULATION;
D O I
10.1140/epjp/s13360-024-04950-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Formulating mitigation strategies is one of the main aspect in the dynamical study of extreme events. Apart from the effective control, easy implementation of the devised tool should also be given importance. In this work, we analyze the mitigation of extreme events in a coupled FitzHugh-Nagumo (FHN) neuron model utilizing an easily implementable constant bias analogous to a constant DC stimulant. We report the route through which the extreme events gets mitigated in Two, Three and N-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N-$$\end{document}coupled FHN systems. In all the three cases, extreme events in the observable x over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{x}}$$\end{document} gets suppressed. We confirm our results with the probability distribution function of peaks, dmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{\mathrm{{{max}}}}$$\end{document} plot and probability plots. Here dmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{\mathrm{{{max}}}}$$\end{document} is a measure of number of standard deviations that crosses the average amplitude corresponding to x over bar max\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{x}}_{\mathrm{{{max}}}}$$\end{document}. Interestingly, we found that constant bias suppresses the extreme events without changing the collective frequency of the system.
引用
收藏
页数:18
相关论文
empty
未找到相关数据