Transcritical and zero-Hopf bifurcations in the Genesio system

被引:0
|
作者
Pedro Toniol Cardin
Jaume Llibre
机构
[1] Universidade Estadual Paulista (UNESP),Departamento de Matemática, Faculdade de Engenharia de Ilha Solteira
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
来源
Nonlinear Dynamics | 2017年 / 88卷
关键词
Genesio system; Transcritical bifurcation; Zero-Hopf Bifurcation; Averaging theory; 34C23; 34C25; 37G10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛+ax¨+bx˙+cx-x2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dddot{x}} + a {\ddot{x}} + b {\dot{x}} + c x - x^2 = 0$$\end{document}, called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=0$$\end{document} and the parameters (a, b) are in the set {(a,b)∈R2:b≠0}\{(0,b)∈R2:b>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{(a,b) \in \mathbb {R}^2 : b \ne 0\} {\setminus } \{(0,b) \in \mathbb {R}^2 : b > 0\}$$\end{document}, and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a=c=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=c=0$$\end{document} and b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>0$$\end{document}.
引用
收藏
页码:547 / 553
页数:6
相关论文
共 50 条
  • [41] HOPF BIFURCATIONS VIA ZERO SETS
    PELIKAN, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 52 (1-3) : 141 - 145
  • [42] Zero-Hopf bifurcation of a cubic jerk system via the third order averaging method
    Chen, Yu-Ming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) : 3595 - 3604
  • [43] Zero-Hopf singularity in bidirectional ring network model with delay
    He, Xing
    Li, Chuandong
    Huang, Tingwen
    Huang, Junjian
    NONLINEAR DYNAMICS, 2014, 78 (04) : 2605 - 2616
  • [44] Zero-Hopf bifurcation in the Volterra-Gause system of predator-prey type
    Ginoux, Jean-Marc
    Llibre, Jaume
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7858 - 7866
  • [45] Integrable zero-Hopf singularities and three-dimensional centres
    Garcia, Isaac A.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) : 327 - 340
  • [46] Zero-Hopf bifurcation of limit cycles in certain differential systems
    Huang, Bo
    Wang, Dongming
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 195
  • [47] Zero-Hopf singularity in bidirectional ring network model with delay
    Xing He
    Chuandong Li
    Tingwen Huang
    Junjian Huang
    Nonlinear Dynamics, 2014, 78 : 2605 - 2616
  • [48] THE THREE-DIMENSIONAL CENTER PROBLEM FOR THE ZERO-HOPF SINGULARITY
    Garcia, Isaac A.
    Valls, Claudia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) : 2027 - 2046
  • [49] ZERO-HOPF BIFURCATION FOR A CLASS OF LORENZ-TYPE SYSTEMS
    Llibre, Jaume
    Perez-Chavela, Ernesto
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (06): : 1731 - 1736
  • [50] Analysis and stabilization of nonlinear systems with a zero-Hopf control bifurcation
    Hamzi, B
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 3912 - 3917