Transcritical and zero-Hopf bifurcations in the Genesio system

被引:0
|
作者
Pedro Toniol Cardin
Jaume Llibre
机构
[1] Universidade Estadual Paulista (UNESP),Departamento de Matemática, Faculdade de Engenharia de Ilha Solteira
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
来源
Nonlinear Dynamics | 2017年 / 88卷
关键词
Genesio system; Transcritical bifurcation; Zero-Hopf Bifurcation; Averaging theory; 34C23; 34C25; 37G10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛+ax¨+bx˙+cx-x2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dddot{x}} + a {\ddot{x}} + b {\dot{x}} + c x - x^2 = 0$$\end{document}, called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=0$$\end{document} and the parameters (a, b) are in the set {(a,b)∈R2:b≠0}\{(0,b)∈R2:b>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{(a,b) \in \mathbb {R}^2 : b \ne 0\} {\setminus } \{(0,b) \in \mathbb {R}^2 : b > 0\}$$\end{document}, and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a=c=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=c=0$$\end{document} and b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>0$$\end{document}.
引用
收藏
页码:547 / 553
页数:6
相关论文
共 50 条
  • [31] Bursting dynamics and the zero-Hopf bifurcation of simple jerk system
    Sun, Xi
    Yan, Shaohui
    Zhang, Yuyan
    Wang, Ertong
    Wang, Qiyu
    Gu, Binxian
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [32] On the integrability and the zero-Hopf bifurcation of a Chen–Wang differential system
    Jaume Llibre
    Regilene D. S. Oliveira
    Claudia Valls
    Nonlinear Dynamics, 2015, 80 : 353 - 361
  • [33] Zero-Hopf bifurcation in the Chua's circuit
    Ginoux, Jean-Marc
    Llibre, Jaume
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [34] On the integrability and the zero-Hopf bifurcation of a Chen-Wang differential system
    Llibre, Jaume
    Oliveira, Regilene D. S.
    Valls, Claudia
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 353 - 361
  • [35] A Generalist Predator and the Planar Zero-Hopf Bifurcation
    Miguel Valenzuela, Luis
    Falconi, Manuel
    Ble, Gamaliel
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03):
  • [36] Zero-Hopf bifurcation in the generalized Hiemenz equation
    Uribe, Marco
    Martinez, Elisa
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 8565 - 8576
  • [37] Zero-Hopf Calculations for Neutral Differential Equations
    Achouri, Houssem
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (04) : 3795 - 3810
  • [38] Dynamics at Infinity, Degenerate Hopf and Zero-Hopf Bifurcation for Kingni-Jafari System with Hidden Attractors
    Wei, Zhouchao
    Moroz, Irene
    Wang, Zhen
    Sprott, Julien Clinton
    Kapitaniak, Tomasz
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (07):
  • [39] Zero-Hopf singularity for general delayed differential equations
    Wu, Xiaoqin P.
    Wang, Liancheng
    NONLINEAR DYNAMICS, 2014, 75 (1-2) : 141 - 155
  • [40] Zero-Hopf singularity for general delayed differential equations
    Xiaoqin P. Wu
    Liancheng Wang
    Nonlinear Dynamics, 2014, 75 : 141 - 155