C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{\ast}$\end{document}-Algebra-valued b-metric spaces and related fixed point theorems

被引:0
作者
Zhenhua Ma
Lining Jiang
机构
[1] Beijing Institute of Technology,School of Mathematics and Statistics
[2] Hebei University of Architecture,Department of Mathematics and Physics
关键词
-algebra; -algebra-valued ; -metric; contractive mapping; fixed point theorem; 47H10; 46L07;
D O I
10.1186/s13663-015-0471-6
中图分类号
学科分类号
摘要
Based on the concept and properties of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{\ast}$\end{document}-algebras, the paper introduces a concept of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{\ast}$\end{document}-algebra-valued b-metric spaces which generalizes the concept of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{\ast}$\end{document}-algebra-valued metric spaces and gives some basic fixed point theorems for self-map with contractive condition on such spaces. As applications, existence and uniqueness results for a type of operator equation and an integral equation are given.
引用
收藏
相关论文
共 32 条
  • [1] Czerwik S(1993)Contraction mappings in Acta Math. Inform. Univ. Ostrav. 1 5-11
  • [2] Bakhtin IA(1989)-metric spaces Funct. Anal., Gos. Ped. Inst. Ulianowsk 30 26-37
  • [3] Boriceanu M(2010)The contraction mapping principle in almost metric spaces Cent. Eur. J. Math. 8 367-377
  • [4] Bota M(1998)Mutivalued fractals in Atti Semin. Mat. Fis. Univ. Modena 46 263-276
  • [5] Petrusel A(2011)-metric spaces Comput. Math. Appl. 62 1677-1684
  • [6] Czerwik S(1998)Nonlinear set-valued contraction mappings in Int. J. Comput. Vis. 30 219-231
  • [7] Hussian N(1994)-metric spaces Pattern Recognit. 27 1005-1018
  • [8] Shah MH(1991)KKM mappings in cone IEEE Trans. Geosci. Remote Sens. 29 1004-1012
  • [9] Fagin R(2009)-metric spaces J. Geom. Anal. 19 452-479
  • [10] Stockmeyer L(2014)Relaxing the triangle inequality in pattern matching Fixed Point Theory Appl. 2014 1078-1080