Scaling of global momentum transport in Taylor-Couette and pipe flow

被引:0
作者
B. Eckhardt
S. Grossmann
D. Lohse
机构
[1] Fachbereich Physik,
[2] Philipps-Universität Marburg,undefined
[3] Renthof 6,undefined
[4] 35032 Marburg,undefined
[5] Germany,undefined
[6] Department of Applied Physics and J.M. Burgers Centre for Fluid Dynamics,undefined
[7] University of Twente,undefined
[8] 7500 AE Enschede,undefined
[9] The Netherlands,undefined
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 2000年 / 18卷
关键词
PACS. 47.27.-i Turbulent flows, convection, and heat transfer;
D O I
暂无
中图分类号
学科分类号
摘要
We interpret measurements of the Reynolds number dependence of the torque in Taylor-Couette flow by Lewis and Swinney [Phys. Rev. E 59, 5457 (1999)] and of the pressure drop in pipe flow by Smits and Zagarola [Phys. Fluids 10, 1045 (1998)] within the scaling theory of Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)], developed in the context of thermal convection. The main idea is to split the energy dissipation into contributions from a boundary layer and the turbulent bulk. This ansatz can account for the observed scaling in both cases if it is assumed that the internal wind velocity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} introduced through the rotational or pressure forcing is related to the external (imposed) velocity U, by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} for the Taylor-Couette (U inner cylinder velocity) and pipe flow (U mean flow velocity) case, respectively. In contrast to the Rayleigh-Bénard case the scaling exponents cannot (yet) be derived from the dynamical equations.
引用
收藏
页码:541 / 544
页数:3
相关论文
empty
未找到相关数据