The time discretization in classes of integro-differential equations with completely monotonic kernels: Weighted asymptotic stability

被引:0
作者
Da Xu
机构
[1] Hunan Normal University,Department of Mathematics
来源
Science China Mathematics | 2013年 / 56卷
关键词
the classes of integro-differential equation; completely monotonic kernel; backward Euler method; convolution quadrature; weighted ; asymptotic stability; 45K05; 65J60; 65D32;
D O I
暂无
中图分类号
学科分类号
摘要
We study discretization in classes of integro-differential equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\begin{gathered} u'(t) + \int_0^t {(\lambda _1 a_1 (t - \tau ) + \lambda _2 a_2 (t - \tau ) + \cdots + \lambda _n a_n (t - \tau ))} u(\tau )d\tau = 0,t > 0, \hfill \\ u(0) = 1,\lambda _j \geqslant 1,j = 1,2,...,n, \hfill \\ \end{gathered} $\end{document}, where the functions aj (t), 1 ⩽ j ⩽ n, are completely monotonic on (0,∞) and locally integrable, but not constant. The equations are discretized using the backward Euler method in combination with order one convolution quadrature for the memory term. The stability properties of the discretization are derived in the weighted l1(ρ; 0,∞) norm, where ρ is a given weight function. Applications to the weighted l1 stability of the numerical solutions of a related equation in Hilbert space are given.
引用
收藏
页码:395 / 424
页数:29
相关论文
共 37 条
[1]  
Carr R. W.(1979)A nonhomogeneous integro-differential equation in Hilbert space SIAM J Math Anal 10 961-984
[2]  
Hannsgen K. B.(1982)Resolvent formulas for a Volterra equation in Hilbert space SIAM J Math Anal 13 459-483
[3]  
Carr R. W.(2002)Sharp SIAM J Numer Anal 40 1538-1560
[4]  
Hannsgen K. B.(1984)-error estimates and superconvergence of mixed finite element methods for non-Fickian flows in porous media SIAM J Math Anal 15 579-594
[5]  
Ewing R. E.(1983)Uniform Quart Appl Math 41 75-83
[6]  
Lin Y. P.(1982) behavior in classes of integrodifferential equations with completely monotonic kernels SIAM J Math Anal 13 962-969
[7]  
Sun T.(1969)A linear integro-differential equation for viscoelastic rods and plates Trans Amer Math Soc 142 539-555
[8]  
Hannsgen K. B.(2011)Complete monotonicity and resolvents of Volterra integro-differential equations SIAM J Numer Anal 49 1553-1571
[9]  
Wheeler R. L.(2011)Indirect Abelian theorems and a linear Volterra equation Math Comput 80 1369-1396
[10]  
Hannsgen K. B.(1988)Uniform Numer Math 52 129-145