On the Existence of a Long Path Between Specified Vertices in a 2-Connected Graph

被引:0
作者
Kazuhide Hirohata
机构
[1] Department of Mathematics,
[2] Keio University,undefined
[3] 3-14-1 Hiyoshi,undefined
[4] Kohoku-ku,undefined
[5] Yokohama 223,undefined
[6] Japan. e-mail: hirohata@comb.math.keio.ac.jp,undefined
来源
Graphs and Combinatorics | 2000年 / 16卷
关键词
Maximum Degree; Distinct Vertex;
D O I
暂无
中图分类号
学科分类号
摘要
 Let G be a 2-connected graph with maximum degree Δ (G)≥d, and let x and y be distinct vertices of G. Let W be a subset of V(G)−{x, y} with cardinality at most d−1. Suppose that max{dG(u), dG(v)}≥d for every pair of vertices u and v in V(G)−({x, y}∪W) with dG(u,v)=2. Then x and y are connected by a path of length at least d−|W|.
引用
收藏
页码:269 / 273
页数:4
相关论文
empty
未找到相关数据