The Riemann problem for a one-dimensional nonlinear wave system with different gamma laws

被引:0
作者
Guodong Wang
Jia-Bao Liu
Lin Zhao
机构
[1] Anhui Jianzhu University,School of Mathematics and Physics
来源
Boundary Value Problems | / 2017卷
关键词
one-dimensional nonlinear wave system; different gamma laws; Riemann problem; perturbed initial data; 35L65; 35J70; 35R35;
D O I
暂无
中图分类号
学科分类号
摘要
The Riemann problem for a one-dimensional nonlinear wave system with different gamma laws is considered. By the properties of wave curves, we observe that this system does not contain the composite wave compared to the barotropic models of gas dynamics with different pressure laws. Under some initial value data, the Riemann solution is constructed. Using the interaction of the elementary waves, we consider the generalized Riemann problem and discover that the Riemann solution is stable for such perturbation of the initial data.
引用
收藏
相关论文
共 37 条
  • [1] C̆anié S(2002)Mixed hyperbolic-elliptic systems in self-similar flows Bol. Soc. Bras. Mat. 32 1-23
  • [2] Keyfitz BL(2006)Free boundary problems for nonlinear wave systems: mach stems for interacting shocks SIAM J. Math. Anal. 37 1947-1977
  • [3] Kim EH(2010)Front tracking for a model of immiscible gas flow with large data BIT Numer. Math. 50 331-376
  • [4] C̆anié S(2009)The solution of the Cauchy problem with large data for a model of a mixture of gases J. Hyperbolic Differ. Equ. 6 25-106
  • [5] Keyfitz BL(2000)On a model of the dynamics of liquid/vapor phase transitions SIAM J. Appl. Math. 60 1270-1301
  • [6] Kim EH(1992)Solutions faibles globales pour l’équation d’Euler d’un fluide compressible avec de grandes données initiales Commun. Partial Differ. Equ. 17 161-187
  • [7] Holden H(1994)Solutions faibles globales pour un modele d’écoulements diphasiques Ann. Sc. Norm. Super. Pisa, Cl. Sci. 21 523-540
  • [8] Risebro NH(2004)The Riemann problem for reversible reactive flows with metastability SIAM J. Appl. Math. 65 426-457
  • [9] Sande H(2008)Global existence of weak solutions for a viscous two-phase model J. Differ. Equ. 245 2660-2703
  • [10] Holden H(2009)Generalised energy conservation law for wave equations with variable propagation speed J. Math. Anal. Appl. 358 56-74