ε-subgradient algorithms for locally lipschitz functions on Riemannian manifolds

被引:0
作者
P. Grohs
S. Hosseini
机构
[1] ETH Zürich,
[2] Seminar for Applied Mathematics,undefined
来源
Advances in Computational Mathematics | 2016年 / 42卷
关键词
Riemannian manifolds; Lipschitz function; Descent direction; Clarke subdifferential; 49J52; 65K05; 58C05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a descent direction method for finding extrema of locally Lipschitz functions defined on Riemannian manifolds. To this end we define a set-valued mapping x→∂εf(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\rightarrow \partial _{\varepsilon } f(x)$\end{document} named ε-subdifferential which is an approximation for the Clarke subdifferential and which generalizes the Goldstein- ε-subdifferential to the Riemannian setting. Using this notion we construct a steepest descent method where the descent directions are computed by a computable approximation of the ε-subdifferential. We establish the global convergence of our algorithm to a stationary point. Numerical experiments illustrate our results.
引用
收藏
页码:333 / 360
页数:27
相关论文
共 76 条
  • [1] Absil PA(2007)Trust-region methods on Riemannian manifolds Found. Comput. Math. 7 303-330
  • [2] Baker CG(2002)Newton’s method on Riemannian manifolds and a geometric model for the human spine IMA J. Numer. Anal. 22 359-390
  • [3] Adler RL(2013)On the convergence of gradient descent for finding the Riemannian center of mass SIAM J. Control Optim. 51 2230-2260
  • [4] Dedieu JP(2005)Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds J. Funct. Anal. 220 304-361
  • [5] Margulies JY(2007)Applications of proximal calculus to fixed point theory on Riemannian manifolds Nonlinear. Anal. 67 154-174
  • [6] Martens M(2003)Continuous subdifferential approximations and their applications J. Math. Sci. 115 2567-2609
  • [7] Shub M(2012)Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds J. Optim. Theory Appl. 154 88-107
  • [8] Afsari B(2012)A subgradient method for convex feasibility on Riemannian manifolds J. Optim. Theory Appl. 152 773-785
  • [9] Tron R(2014)A Riemannian subgradient algorithm for economic dispatch with valve-point effect J. Comput. Appl. Math. 255 848-866
  • [10] Vidal R(2002)Approximating subdifferentials by random sampling of gradients Math. Oper. Res. 27 567-584