Bifurcation dynamics of a plant-pest-natural enemy system in polluted environment incorporating gestation delays

被引:0
作者
Vijay Kumar
Joydip Dhar
Harbax S. Bhatti
机构
[1] Inder Kumar Gujral-Punjab Technical University,
[2] Beant College of Engineering and Technology,undefined
[3] ABV-Indian Institute of Information Technology and Management,undefined
[4] B.B.S.B. Engineering College,undefined
来源
Ricerche di Matematica | 2020年 / 69卷
关键词
Plant-pest-natural enemy; Polluted environment; Equilibria; Gestation delay; Boundedness; Positivity; Hopf bifurcation; Sensitivity analysis; 34C23; 34D20; 92B05; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, a three species plant-pest-natural enemy compartmental model incorporating gestation delays for both pests and natural enemies in a polluted environment is proposed. The boundedness and positivity properties of the model are established. Equilibria and their stability analysis are carried out for all possible steady states. The existence of Hopf bifurcation in the system is analyzed. It is established that the natural enemy free steady state E2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_2$$\end{document} is stable for specific threshold parameter values τ1∈(0,τ10+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _1\in (0,\tau _{10}^+)$$\end{document}, i.e., gestation delay for pest species belongs to zero and it’s own critical value, τ10+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _{10}^+$$\end{document} and the coexisting steady state E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^*$$\end{document} is stable for specific threshold parameter values τ1∈(0,τ10+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _1\in (0,\tau _{10}^+)$$\end{document} and τ2∈(0,τ20+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _2\in (0,\tau _{20}^+)$$\end{document}, i.e., gestation delay for pest species belongs to zero and it’s own critical value, τ10+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _{10}^+$$\end{document} and gestation delay for natural enemies belongs to zero and it’s own critical value, τ20+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _{20}^+$$\end{document}. If both gestation delays for pest and natural enemies, i.e., τ1,τ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _1, \tau _2$$\end{document} respectively cross their threshold parameter values, i.e., τ1>τ10+,τ2>τ20+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _1>\tau _{10}^{+},\tau _2>\tau _{20}^{+}$$\end{document}, then the system perceived oscillating behavior and Hopf bifurcation occurs in the system. The sensitivity analysis of the system at interior steady state is presented and the sensitive indices of the variables are identified. Finally, simulations are performed to support our analytic results with a distinct set of parametric values.
引用
收藏
页码:533 / 551
页数:18
相关论文
共 67 条
  • [1] Thomas MB(1998)Biocontrol-risky but necessarys Trends Ecol. Evol. 13 325-329
  • [2] Willis AJ(1992)Biological control through augmentative releases of natural enemies: a strategy whose time has come Am. Entomol. 38 172-179
  • [3] Parrella MP(2004)The status of pesticide pollution in Tanzania Talanta 64 48-53
  • [4] Heinz KM(1992)Pesticide use in tomato production: consumer concerns and willingness-to-pay Agribusiness 8 131-142
  • [5] Nunney L(2012)Sustainability and optimal control of an exploited prey predator system through provision of alternative food to predator BioSystems 109 220-232
  • [6] Kishimba M(2015)Natural enemies deployment in patchy environments for augmentative biological control Appl. Math. Comput. 266 982-999
  • [7] Henry L(2017)Plant pest natural enemy dynamics with disease in pest and gestation delay for natural enemy J. Math. Comput. Sci. 5 948-965
  • [8] Mwevura H(2009)Hopf bifurcation analysis of a predator–prey system with Holling type IV functional response and time delay Appl. Math. Comput. 215 1484-1495
  • [9] Mmochi A(2011)Chaos and Hopf bifurcation analysis for a two species predator–prey system with prey refuge and diffusion Nonlinear Anal. Real World Appl. 12 1047-1061
  • [10] Mihale M(2016)Dynamics of a prey generalized predator system with disease in prey and gestation delay for predator Model. Earth Syst. Environ. 2 52-21